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Accelerated soil drying linked to increasing evaporative
demand in wet regions
Yamin Qing1,4, Shuo Wang 1,4✉, Zong-Liang Yang 2, Pierre Gentine3, Boen Zhang1 and Jagger Alexander2

The rapid decline in soil water affects water resources, plant physiology, and agricultural development. However, the changes in soil
drying rate and associated climatic mechanisms behind such changes remain poorly understood. Here, we find that wet regions
have witnessed a significant increasing trend in the soil drying rate during 1980−2020, with an average increase of 6.01− 9.90%
per decade, whereas there is no consistent trend in dry regions. We also identify a near-linear relationship between the annual soil
drying rate and its influencing factors associated with atmospheric aridity and high temperatures. Further, enhanced
evapotranspiration by atmospheric aridity and high temperatures is the dominant factor increasing the soil drying rate in wet
regions. Our results highlight the accelerated soil drying in the recent four decades in wet regions, which implies an increased risk
of rapidly developing droughts, posing a serious challenge for the adaptability of ecosystems and agriculture to rapid drying.
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INTRODUCTION
Changes in soil moisture (SM) play a key role in the exchange of
water1–3, energy4–6, and carbon7–10, affecting plant transpiration
and photosynthesis11–13, microbiological and biochemical activ-
ity14–16, as well as vegetation dynamics17–19. SM appears to have
exhibited a long-term decreasing trend over the past few decades,
at least over specific regions20,21, and such a strong tendency
towards drying may contribute to widespread increases in
droughts22,23. Further, the rate of soil drying has substantial
impacts on plant physiology and acclimation: as slowly drying
stress may induce better plant acclimation than rapidly imposed
stress24–26. However, rapidly developing soil dryness may not
provide sufficient time for such acclimatory responses to occur,
resulting in more severe physiological responses27. A rapid soil
drying rate will also likely make water scarcity an even greater
limitation to plant productivity across an increasing amount of
global land28. Recent studies have tried to quantify SM trends and
variabilities, but the changes in soil drying rate and associated
climatic mechanisms behind such changes remain elusive.
The changes in SM are associated with a range of climatic

factors that can influence SM dynamics, including temperature (T),
vapor pressure deficit (VPD), radiation (Rn), and precipitation
(P)29–32. Rapid soil drying can be triggered or exacerbated by two
or more extremes that occur simultaneously. A representative
example is an extreme deficit of P coinciding with a heat wave,
such as the fast-developing soil drying that occurred in southern
Queensland in January 201833. When the simultaneous occur-
rences of extremes are superimposed on more slowly evolving
factors such as a slow-developing SM deficit, rapid soil drying may
occur. On the other hand, land and atmosphere interactions play
an indirect role in accelerating soil drying. A typical example is
flash drought characterized by a sudden onset and rapid soil
drying with severe impacts34,35. P reduces the input of water into
the soil, leading to insufficient SM. This may cause high near-
surface air T and VPD, through land−atmosphere coupling,
eventually causing a further decline in SM with a rapid drying

rate36. The interactions between these factors are complex and
can vary across different spatial and temporal scales, making it
challenging to quantify the relative contributions of each factor to
changes in soil drying rate. However, there is still a significant gap
in our understanding of the mechanisms driving the changes in
soil drying rate, highlighting the need for further research
improving our understanding of rapid soil drying.
We assess changes and trends in annual soil drying rates, across

the globe, for 1980–2020 using three observation-based datasets
(ERA5, GLEAM, and MERRA-2). Here, the soil drying rate refers to
the decline rate of soil water in the development of soil dryness
(SM < 30th percentile: SM below 30th percentile indicates the
occurrence of dryness, as recommended by the U.S. Drought
Monitor). Additionally, we investigate potential individual factors
(i.e., T, VPD, Rn, and P) and combined factors (i.e., two or three
factors are combined) associated with the likelihood of rapid soil
drying. Specifically, the combined factors, which consider the
interactions and feedback between atmospheric factors, are used
to quantify the joint effects of individual factors on the soil drying
rate from a perspective of causal impact. This analysis helps to
improve our understanding of the mechanisms driving the
changes in soil drying rate. Our findings are expected to be useful
for drought management, particularly in regions that are prone to
rapidly evolving droughts, and can inform the development of
effective management strategies to mitigate the impacts of soil
drying on ecological and socio-economic systems.

RESULTS
Long-term changes and trends in SM mean, variability, and
extreme
We choose a 5-day (pentad) sampling frequency to further detect
SM variations, since large SM variability is identified at the short
pentad time scale (Fig. 1a). The spatial patterns of the changes in
pentad-mean and pentad-to-pentad SM variability exhibit almost
opposite features during 1980–2020 (Fig. 1b, d). An overall
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decreasing trend of pentad-mean SM is found, with 34.93−74.28%
of land experiencing a significant (p < 0.05) drying trend.
Specifically, 16.82−34.41% and 18.11−39.87% of wet and dry
areas are becoming significantly drier, respectively, and the
impacted areas are much wider than the areas getting wetter
(4.92−17.41% and 7.14−17.34%; Fig. 1c). However, the pentad-to-
pentad variability of SM shows mostly an increasing trend and
parts of land areas are becoming significantly more variable,
especially in Europe, south Asia, South America, and Africa, during
the period of 1980−2020, suggesting in many regions SM is
becoming drier and more variable. Similar trends can also be
obtained for all three datasets (Supplementary Fig. 1). Further, we
find that the annual SM decline rate (the difference between the
current and next-pentad SM) shows an overall upward trend,
especially in wet regions (Fig. 1e, f). 19.16−22.87% of wet regions
show a significant increasing trend in the SM decline rate, with a
global-averaged rate of 3.66 10−3m3m−3pentad−1, and
8.31−14.65% of dry regions witness a significant increasing trend
in the soil decline rate (global-averaged rate of 1.81
10−3m3m−3pentad−1), indicating that the SM decline rate is

accelerating, especially in wet regions (Fig. 1e). This is consistent
across all three datasets (Supplementary Fig. 2).
Generally, critical damages to plants are often caused by rapid

soil drying during the development of dryness conditions
compared with slow drying ones, in which plants can acclimate
or adapt27. A slow-drying rate of SM may improve the water-use
efficiency of plants and increase dryness tolerance through
osmotic adjustment or by altering the root–shoot allocation to
lessen the resulting physiological impairment37,38. However, rapid
soil drying provides insufficient time for plants to activate
protective mechanisms under limited-water conditions, potentially
causing irreversible damage to plants27. Therefore, the soil drying
rate, which refers to the SM decline rate during the development
of soil dryness (SM < 30th percentile), is examined. We find that
although the annual soil drying rate varies across three reanalysis
datasets, it is increasing across datasets (6.01−9.90% per decade)
during the period of 1980–2020, in wet regions (Fig. 2a). On the
contrary, there is no consistent trend in the mean soil drying rate
in dry regions (Fig. 2b), where evaporation rate is more regulated
by SM limitations6. Meanwhile, evapotranspiration (ET) has
witnessed a significant and steady increase during the period of

Fig. 1 SM changes in mean, variability, and extreme. a Global area–weighted average changes in SM variability on different time scales
including pentad, monthly, seasonal, and yearly. b Spatial distribution of trend in pentad mean of SM during 1980–2020. c Proportion of areas
showing increasing and decreasing trends in pentad mean of SM during 1980–2020 for wet and dry regions. The red dashed lines at the top
of each bar represent the range of uncertainty in three different datasets. d Spatial distribution of trends in pentad variability of SM during
1980–2020. e Proportion of areas showing increasing and decreasing trends in SM decline rate during 1980–2020 for wet and dry regions. The
red dashed lines at the top of each bar represent the range of uncertainty in three different datasets. f Spatial distribution of trends in SM
decline rate during 1980–2020. * represents the regions where the trend is statistically significant at the level of 0.05. The results in b, d, f are
obtained based on the ensemble mean of ERA5, MERRA-2, and GLEAM. Stippling represents the regions where the trend is statistically
significant at the level of 0.05.

Y. Qing et al.

2

npj Climate and Atmospheric Science (2023)   205 Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



1980–2020 only in wet regions, whereas a consistent increasing
trend is not shown in P (Fig. 2c–f). The trends in soil drying rate
and ET in wet regions align with those calculated from 80
FLUXNET sites with continuous records (>5 years), despite the fact
that these sites’ distributions do not represent the entire globe
(Supplementary table 1). Similar increasing trends for soil dying
rate and corresponding ET and P in wet regions can also be
detected when changing the soil drying range from the SM range
of 0−30th percentile to 0−25th percentile (Supplementary Fig. 3)
and 0−20th percentile (Supplementary Fig. 4). These results
indicate that rapid soil drying is in wet regions and accompanied
by a significant increase in the mean ET over the past four
decades.

Sensitivity of soil drying rate to potential influencing factors
Increased evaporative demand and a critical lack of P are the two
main drivers of soil drying. When a P deficit occurs over an
extended period of time (e.g., several weeks), SM is depleted by
evapotranspiration, yielding increased evaporative stress and the

potential for desiccation of the terrestrial surface. Additionally,
persistent atmospheric anomalies can increase evaporative
demand at the land surface, thereby increasing the evaporative
demand and evaporative stress. Thus, we use linear and
exponential regressions to analyze the optimal association
between the annual soil drying rate and potential atmospheric
drivers (i.e., P and ET demand factors: T, VPD, and Rn). A linear
regression is identified as the optimal model for T, VPD, and Rn in
wet regions, which explains 85%, 63%, and 85% of the interannual
variability in the rate of soil drying (Fig. 3a, c, b). However, the fits
are insignificant for T, VPD, or Rn in dry regions (Fig. 3e, g, f).
Expectedly, the annual soil drying rate is weakly correlated with P,
both in wet (4%) and dry (0%) regions (Fig. 3d, h). Indeed,
precipitation does not control the drying rate (regulated by
evaporative demand), but rather the mean soil moisture state. We
also detrend the factors influencing the rate of soil drying using
linear regressions, which helps to avoid spurious correlations
arising from a common trend. We then estimate the correlation
with the annual soil drying rate. The detrended correlations also

Fig. 2 Trends of annual soil drying rate (in the SM range of 0−30th percentile) and corresponding atmospheric factors in wet and dry
regions during 1980–2020 based on ERA5, GLEAM, MERRA-2, and in-situ observation data. a, b Trends of annual soil drying rate in wet and
dry regions during 1980–2020. c, d Same as a, b but for P. e, f Same as a, b but for ET. g–i Trends of annual soil drying rate, P, and ET in wet and
dry regions based on in-situ observation data. The linear annual trends of soil drying rate, P, and ET are estimated based on the Sen’s slope
estimator, and statistical significances in trends are determined based on the MK test. * represents the statistically significant trend at the level
of 0.05.
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confirm the relatively high R2 for T (61%), VPD (39%), and Rn
(62%), but the low R2 for P (Supplementary Fig. 5). Consistent
results from linear and exponential regression analyses are
obtained for all three datasets (Supplementary Figs. 6−11).
Admittedly, the ET rate is mainly controlled by T, VPD, and Rn,

which is also confirmed by linear regressions between these
factors and ET (Supplementary Figs. 12−14). Additionally, the
significant (p < 0.01) causal effects of individual atmospheric
factors (i.e., T, VPD, and Rn), except for P, on SM changes are
obtained using the convergent cross-mapping technique (see
Methods), which can account for the existing causal relationship

between these factors and the annual soil drying rate (Fig. 4a–d).
And all three datasets confirm similar causal relationships
(Supplementary Fig. 15). Compared with the P deficit, therefore,
ET changes largely reflect the evaporative demand changes in wet
regions and the drying rate is mostly regulated by evaporative
demand due to atmospheric aridity and high air temperatures in
wet regions. By contrast, there is no consistent causal relationship
between atmospheric factors and the annual soil drying rate for
three datasets (Supplementary Fig. 16). In dry regions, reduced soil
moisture regulates the rate of ET and can compensate for the
increased evaporative demand.

Fig. 3 Regression between the annual soil drying rate and atmospheric factors in wet and dry regions during 1980–2020. a, e Regression
between the annual soil drying rate and T for wet and dry regions. b, f Regression between the annual soil drying rate and Rn for wet and dry
regions. c, g Regression between the annual soil drying rate and VPD for wet and dry regions. d, h Regression between the annual soil drying
rate and P for wet and dry regions. Solid lines are the best fit lines derived based on the coefficient of determination (R2; *p < 0.05; **p < 0.01).
The best fit lines show linear relationships for all the factors. Red solid lines represent a fit with a significant correlation (p < 0.01). The dashed
lines are the 95% prediction intervals. All results are obtained based on the ensemble mean of ERA5, MERRA-2, and GLEAM.
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Contribution of interactions between atmospheric factors to
rapid soil drying
The interactions between T, VPD, Rn, and P are complex and not
fully understood. For example, high T can increase VPD, which in
turn can exacerbate water stress and lead to more severe dryness.
Similarly, low P combined with high T can lead to more rapid
evaporation and SM depletion, increasing the severity of dryness.
It is thus essential to study the interactions between T, VPD, Rn,
and P to better understand the rate of rapid soil drying.
In addition to the individual causal effects of atmospheric

factors (i.e., T, VPD, Rn, and P) on SM changes, we also investigate
their combined impacts, including T&VPD, T&Rn, Rn&VPD, T&P,
VPD&P, and T&VPD&Rn, on SM changes by multivariate probability
distributions (see “Methods” section). We find that SM is
significantly (p < 0.01) forced by the joint atmospheric variables.
Moreover, the causal effects of joint atmospheric variables on SM
changes are stronger than those of individual atmospheric factors
(Fig. 5). For example, SM is strongly forced by the combination of T
and VPD (Pearson correlation coefficient (ρ) = 0.89) (Fig. 5a),
whereas SM is relatively weakly forced by T (ρ= 0.79) and VPD
(ρ= 0.80) alone, respectively (Fig. 4a, b). For all possible
combinations of factors (i.e., T, VPD, and Rn) associated with ET,
the causal effect of T&VPD on SM change is strongest (Fig. 5a–c).
Additionally, even though there are relatively weak (ρ= 0.54)
causal effects of P on SM changes, the causal effects on SM
changes become stronger when P is combined with T&VPD, with a
higher correlation coefficient between T&VPD&P and SM (ρ= 0.81;
Fig. 5d). For dry regions, however, the joint causal effects of
combined atmospheric factors on SM changes decrease in
comparison with individual factors (Supplementary Fig. 17).
Compared with individual atmospheric factors, therefore, multiple
factors that occur in combination contribute more to the changes
in SM in wet regions, which is also confirmed by similar causal
relationships for all three datasets (Supplementary Figs. 18−20).
In view of the significant causality of combined atmospheric

factors on SM changes, we compare the mean soil drying rates
under individual and combined atmospheric factors to confirm

the contribution of combined factors on rapid soil drying.
Generally, we find that the higher soil drying rates are mostly
identified in wet regions (Fig. 5e) and always correspond to larger
positive T, VPD, and Rn anomalies as well as negative P anomalies
(Supplementary Fig. 21). Specifically, we compare the soil drying
rates in which extreme atmospheric factor anomalies occur during
soil drying. We find that the regions with combined factor
anomalies witness a higher soil drying rate and ET (T&VPD (7.46
10−3m3m−3pentad−1), compared to that with an individual factor
anomaly (i.e., T, VPD, Rn, and P) in wet regions (Fig. 5f, g). Such a
pattern cannot be obtained in dry regions. The joint effect of T
and VPD on the soil drying rate is largely attributed to the land
−atmosphere interaction. The close association between soil
dryness and combined atmospheric drying and heating tends to
exacerbate the intensifying SM decline, resulting in a relatively
high decline rate of SM under the mutual amplification of soil
dryness and combined atmospheric drying and heating (Supple-
mentary Fig. 22). In dry regions, evapotranspiration may decline
during soil drying due to limited soil moisture supply, resulting in
reduced bare-soil evaporation and transpiration due to stomatal
closure39. In this case, further precipitation deficits can be a
significant driver of soil drying, and the influence of evapotran-
spiration on soil drying may vary based on the total water storage
anomalies.
Although P is not a strong explanatory variable for the increase

in annual soil drying rate based on the linear and causality
analyses, P deficit is an essential condition in the soil drying
process (i.e., not in the rate but in the mean state). Indeed, soil
dryness is often caused by an initial P deficit (Supplementary
Fig. 23). Under the conditions of P deficit, the enhanced ET rate is
the dominant driver of the soil drying rate. When the surface SM
becomes insufficient to supply water for evapotranspiration,
initiated by a P deficit, water becomes a limiting factor. Under
water-limited conditions, a further increase in evaporation can no
longer continue6,40, even when demand (T and VPD) increases.
This is why in dry regions the drying rate is not changing

Fig. 4 Detection of causality using convergent cross mapping. a–d Causal relationships of SM− T, SM− VPD, SM−Rn, and SM− P for wet
regions using the convergent cross mapping (CCM) for 1980− 2020. The x axis represents the length of time series. The shaded areas show
the mean ± SD from bootstrapped iterations. All results are obtained based on the ensemble mean of ERA5, MERRA-2, and GLEAM.
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drastically, compared to wet regions where more directly track
atmospheric demand changes.

DISCUSSION
Compared with deep SM, SM in shallow soil layers responds
faster to meteorological anomalies and interacts more closely
with the atmosphere and its evaporative demand41,42. The
water stored in the root-zone layer is directly available to
support plant growth, which is a dominant factor affecting
agricultural productivity. Thus, the rapid drying rate in the root-
zone SM may cause damage to plants and agricultural
production. However, the surface SM experiences a much
larger decline rate since the top-layer soil responds more
directly to evaporative demand increased by higher T and VPD
and is not directly influenced by plant stomata (that can
mitigate the impact of atmospheric demand changes) unlike
deeper rooting depth SM43,44.
The investigation of soil drying rate and its underlying

mechanisms is still at a preliminary stage. For instance, rapid
drying in China is often explained as anomalies of meteor-
ological variables compared to slowly developing dryness45. In
addition, vegetation greening can significantly increase the
frequency of rapid drying, such as those which have been

shown in the Great Plains and the western United States during
warm seasons through enhanced evapotranspiration46. Pre-
vious studies have indicated that anthropogenic warming may
exacerbate rapid drying conditions in China47. The rapid drying
that occurred in the southeast United States during September
of 2019 was associated with an extreme positive Indian Ocean
Dipole (IOD)48. It is worth noting that although we focus on the
contribution of atmospheric factors on the rapid soil drying
rate, there are many other factors affecting the rapid decline in
SM. For example, vegetation is a key component influencing
rapid soil drying considering its important role in mediating the
transpiration49. Changes in land use, such as deforestation,
urbanization, and agricultural expansion, can significantly alter
soil moisture dynamics by altering surface runoff, evapotran-
spiration, and soil structure, potentially resulting in rapid soil
drying50. Therefore, exploring mechanisms behind soil drying,
especially in wet regions, is challenging but a promising
direction for unraveling the mystery of rapid soil drying.
We confirm that the enhanced ET rate by increasing demand (T

and VPD) plays a dominant role in rapid soil drying. ET is an
important feedback mechanism in the climate system, influencing
the exchange of energy and water between the land surface and
the atmosphere51. Enhanced ET due to increasing demand can
amplify the warming effect of greenhouse gases and contribute to

Fig. 5 Influence of interaction between atmospheric factors on soil drying rate. a–d Causal relationships of SM− T&VPD, SM− T&Rn, SM
−Rn&VPD, SM− T&P, SM− VPD&P, and SM− T&VPD&P for wet regions using the convergent cross mapping (CCM). The x axis represents the
length of time series. The shaded areas show the mean ± SD from bootstrapped iterations. e Spatial distribution of mean soil drying rate for
1980− 2020. f Comparison of soil drying rate (mean SM decline rate at the SM ranges of 0−30th percentile) with T anomaly (>1 SD), VPD
anomaly (>1 SD), Rn anomaly (>1 SD), and P anomaly (<−1 SD) in wet and dry regions. g Same as f but for evapotranspiration (ET). The short
horizontal line inside the box represents the 50th percentile, and the top and bottom of the box represent the 75th and 25th percentiles,
respectively. The top and bottom of the line represent the 95th and 5th percentiles, respectively. The red triangles represent the mean values.
All results are obtained based on the ensemble mean of ERA5, MERRA-2, and GLEAM.
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positive feedback loops, exacerbating the impacts of climate
change. Understanding the role of ET in the climate system can
inform climate change mitigation and adaptation strategies, such
as reducing greenhouse gas emissions and developing climate-
resilient land use practices. Overall, the detection and under-
standing of the mechanisms of rapid soil drying have far-reaching
implications for ecosystem health, agricultural productivity, and
climate change adaptation.
Collectively, our findings confirm that soil drying is accelerat-

ing in recent decades, especially in wet regions. SM plays a
critical role in the cycling of carbon in terrestrial ecosystems. The
acceleration of soil drying in wet regions can lead to a decrease
in soil organic matter content and a reduction in carbon
sequestration potential52,53. This can have significant implications
for global carbon cycle, as wet regions are often considered
important carbon sinks. On the other hand, the soil drying phase
intensifies over wet regions compared with dry regions.
Vegetation in dry regions may acclimate to local conditions by
changing its stomata regulation or xylem properties54. However,
lower adaptability to dryness for vegetation in wet regions may
cause more severe damage and even result in mortality due to
poor regulation of vegetation when dryness occurs55,56. In
addition, the confirmed role of individual and combined atmo-
spheric factors in promoting rapid soil drying has important
implications for the occurrence of SM droughts, especially for
flash droughts. Identifying the drivers of rapid soil drying and
associated factors that may speed up the rapid SM decline is
crucial to developing plausible risk mitigation strategies based on
multi-criteria analysis of potential weather conditions in different
geographical contexts.

METHODS
Definition of dryness condition and drying rate
The rate of change in SM refers to the difference between the
current and next-pentad SM, and thus the positive difference is
the SM decline rate (unit: m3m−3pentad−1). Since we focus on
the SM decline rate during the development of dryness
conditions (i.e., SM ≤ 30th percentile) to assess the soil drying
rate, we define a pentad as a dryness if the SM is less than (or
equal to) the 30th percentile during 1980–2020. Thus, soil drying
rate refers to the mean SM decline rate in the range of 0−30th
percentile in particular, and the SM decline rate refers to the
mean SM decline rate in the whole range of 0−100th percentile.
It should be noted that all SM decline is evaluated without
requirement regarding the rate of soil moisture decline, and
rapidly evolving droughts (i.e., flash droughts) may represent an
extreme manifestation within the context of the soil drying we
are examining. To avoid the effect of different dryness thresholds
on the results, we also choose the 0−25th and 0−20th
percentiles to represent the development of dryness conditions
to investigate the soil drying rate and corresponding atmo-
spheric anomalies.

Detection of temporal trend
The Mann–Kendall (M-K)57,58 method is a nonparametric test,
which is commonly used for trend detection that examines
whether there is a monotonic trend in the time series of the
variable of interest. In the M-K test, the null hypothesis, H0, is
that there is no monotonic trend in the series. The alternative
hypothesis, H1, is that the data has a monotonic trend (positive
or negative). Positive values of standardized test statistic ZMK

indicate an increasing trend in the SM decline rate, whereas
negative ZMK values suggest a decreasing trend. The advan-
tages of the M-K test are that statistical analysis is not needed
and samples are not required to follow a particular distribution.
Thus, this method is not affected by abnormal values, and can

be used to well characterize the trend of a time series. The M-K
trend analysis was performed in this study to examine the trend
of the soil drying rate on a global scale. For a given time series
ðx1; ¼ ; xnÞ, the test statistic ZMK was calculated as follows:

S ¼
Xn�1

i¼1

Xn
j¼iþ1

signðxj � xiÞ (1)

signðxj � xlÞ ¼
þ1; xj > xi
0; xj ¼ xi
�1; xj < xi

8><
>:

9>=
>; (2)

VarðSÞ ¼ 1
18

½nðn� 1Þð2nþ 5Þ �
X
p

tpðtp � 1Þð2tp þ 5Þ� (3)

ZMK ¼

S�1ffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p if S > 0

0 if S ¼ 0
Sþ1ffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p if S < 0

8>><
>>:

(4)

where n is the length of the time series. xi and xj are the sequential
data in time series. tp is the number of ties of the pth value.

Linear regression and exponential regression
We investigate the relationship between atmospheric drivers
(independent variable) and the annual soil drying rate (dependent
variable) using a linear regression and an exponential regression.
The exponential fitting can be described by y= abx, where y and x
are the dependent and independent variables, respectively. a and
b are the fitting parameters. We evaluate the goodness-of-fit using
the R2 and the p value associated to the correlation. We also
investigate the association between the detrended time series of
atmospheric drivers and the annual soil drying rate to avoid
spurious correlations.

Bivariate copulas
Bivariate copulas are mathematical functions that can be used
to describe the dependence between two random variables
and to derive their joint distribution. The advantages of copulas
are their ability to overcome the shortcoming of assessing the
co-occurrence rate of two climate extremes with few samples
and the flexibility of capturing the complex dependence
between climate variables regardless of their marginal distribu-
tions59. The joint distribution of random variables X and Y can
be expressed as:

FX;Yðx; yÞ ¼ PðX � x; Y � yÞ (5)

where X and Y are random variables, and P is their joint
distribution. FXðxÞ ¼ PðX � xÞ and FYðyÞ ¼ PðY � yÞ are the
marginal probability distributions of X and Y, respectively. The
joint cumulative distribution function (CDF) of X and Y can be
expressed as:

FX;Yðx; yÞ ¼ C½FXðxÞ; FYðyÞ� ¼ Cðu; vÞ; 0 � u; v � 1 (6)

where FX(x) and FY(y) are transformed into two uniformly
distributed random variables u and v, and C is a copula function.
The copula families, including Gaussian, Student’s t, Clayton,
Gumbel, and Frank copula, were used to model the dependence
structures of random variables. For each grid point, the optimal
copula model was selected based on the Bayesian Information
Criterion to well represent the dependence structure between two
random variables.
The concepts of return level and return period provide critical

information for risk assessment and decision-making60. The return
level with a T-year return period represents an event that has a 1/T
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chance of occurrence in any given year61. And the multivariate
return period (RP) in terms of X and Y is defined as follows:

RP ¼ μ

1� FX;Yðx; yÞ (7)

where μ > 0 is the average interarrival time of X and Y (μ= 1/73
indicates that the average interarrival time between adjacent
samples in the time series is 1/73 year).
Here, we use bivariate copulas to characterize the joint

probabilities of T&VPD, VPD&P, and T&P and their return periods.

Vine copulas
The bivariate copulas are not flexible in a dimension of three or
higher and thus may not well represent the complex interactions
of hydroclimate variables in a dimension of three or higher62,63.
Therefore, vine copulas, a more flexible approach than copulas,
are used to construct a joint multivariate probability distribution of
T, VPD, and Rn, improving the estimation of the joint return period
of T, VPD, and Rn64. Assume that x, y, and z signify T, VPD, and Rn,
respectively. The joint density p(x, y, z) can be decomposed using
vine copulas as follows:

pðx; y; zÞ ¼ pðxÞ � pðyÞ � pðzÞ � cðux ; uy; θx;yÞ � cðux ; uz; θx;zÞ�
cðhðuy ; ux ; θx;yÞ; hðuz; ux ; θx;zÞ; θy;zjxÞ

(8)

where p(x), p(y), and p(z) represent the marginal probability
density functions (PDFs); u represents the marginal cumulative
probability; c represents the bivariate copula density; θx,y, θx,z, and
θy,z|x represent the parameters of bivariate copulas; the ℎ-function
is the conditional distribution function. For example, h(uy, ux, θx,y)
can be expressed as:

hðuy ; ux; θx;yÞ ¼ Fðuy juxÞ ¼ ∂Cx;yfFðyÞ; FðxÞ; θx;yg
∂FðxÞ (9)

where F(x)= ux and F(y)= uy represent the marginal CDFs. Since
the vine structure (i.e., Eq. (8)) varies with the order of variables
and the bivariate copula families, the sequential maximal
spanning tree algorithm and the BIC are used to identify an
appropriate structure65. After determining the vine structure, the
joint cumulative probability of T, VPD, and Rn, FX,Y,Z(x, y, z), can be
estimated through a three-dimensional numerical integration for
Eq. (8). Such estimates are inserted into Eq. (10) to calculate the
joint return periods of T, VPD, and Rn.

RPðx; y; zÞ ¼ μ

1� FX;Y;Zðx; y; zÞ (10)

where μ > 0 is the average interarrival time of X, Y, and Z
(μ= 1/73 indicates that the average interarrival time between
adjacent samples in the time series is 1/73 year).

Detection of causal relationships: convergent cross mapping
The bivariate copula and vine copula approaches provide joint
variables, namely the return period of T&VPD, T&P, VPD&P, and
T&VPD&P, that integrate the temporal information of concurrent
atmospheric factors. Such joint return periods are used as the
causal variable X to examine the causal relationships between
concurrent atmospheric factors and SM based on Convergent
cross mapping (CCM).
CCM is a powerful approach that can help distinguish causality

from spurious correlation in time series of non-linear dynamical
systems66,67. In CCM, causality is detected by measuring the extent
to which the historical record of the affected variable Y (or its
proxies) reliably estimates the states of a causal variable X. That is,
if variable X is influencing Y, then, based on the generalized
Takens’ theorem, the causal variable X can be recovered from the
historical record of the affected variable Y. The skill of cross
mapping is defined as the coefficient ρ of correlation between
predictions and observations of X. If the ρ increases with the

length of the time series and convergence is present, then the
causal effect of X on Y can be inferred. A simple model system
consisting of 2 coupled logistic differentia equations can be
expressed as

Xðt þ 1Þ ¼ XðtÞðrx � rxXðtÞ � βx;yYðtÞÞ (11)

Yðt þ 1Þ ¼ YðtÞðry � ryYðtÞ � αy;xXðtÞÞ (12)

where t and t+ 1 are the time steps. rx and ry are the variables’
intrinsic growth rates, and βx, y and αy, x represent the impacts of
variable X on the dynamics of variable Y and the impacts of
variable Y on the dynamics of variable X, respectively.
In this study, the CCM analysis was implemented using the

multispatial CCM package in the R language environment. We
analyze the dynamical systems using optimal embedding dimen-
sion estimated by simplex projection, and τ= 1 (time lags),
iteration = 1000 (the number of bootstrap iterations) based on the
pentad data for the study period.

Definition of dryland
The global wet and dry regimes (Supplementary Fig. 24) can be
identified as the regions with an aridity index (AI). The aridity
index (AI), expressed as the ratio of potential evaporation (Ep) to
precipitation (P), is a widely used indicator of regional moisture
conditions. The interplay between water supply and demand,
including both Ep and P, is critical to the assessment of changes in
dryness and dryland dynamics. The AI can thus be calculated
based on the ratio between average annual Ep and P using
monthly Ep and P from the Climatic Research Unit (CRU), which
represents the characteristics of dryness/desertification over a
specific region.

AI ¼ Ep
P

Dry ðAI > 1:5Þ
Wet ðAI � 1:5Þ

�
(13)

DATA AVAILABILITY
SM data
Daily surface SM were obtained from the European Centre for Medium-Range
Weather Forecasts (ERA5) (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5), the Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) (https://disc.gsfc.nasa.gov), and the Global Land Evaporation
Amsterdam Model (GLEAM) (https://www.gleam.eu/) datasets. The ERA5, MERRA-2,
and GLEAM SM datasets are observationally constrained, which have been widely
used to analyze global and regional SM changes. The daily SM data from three
datasets were aggregated to the same resolution of 2.5° × 2.5° and a temporal
resolution of pentads for 1980−2020. Finally, we aggregate the daily values to
pentad averages.
FLUXNET2015
To compare the soil drying trend with ground-level observations, we selected 80 sites
in the FLUXNET2015 datasets across the globe (Supplementary table 1). Sites were
chosen to ensure that SM, P, and latent heat fluxes were collected for more than
5 years.
Climatic data
We use daily climatic data from the ERA5 and MERRA-2 to calculate daily VPD. Daily
VPD was calculated as the difference between saturated water vapor pressure,
determined by near-surface T, and actual water vapor pressure, determined by the
dew-point T. In addition to T and VPD, Rn and P were also obtained from the ERA5
and MERRA-2. As for the GLEAM, daily P from the Multi-Source Weighted Ensemble
Precipitation (MSWEP) (http://www.gloh2o.org/mswep/), together with near-surface
T, Rn, and VPD from ERA5, were used to assess the relationship between GLEAM SM
and atmospheric factors. ET was calculated from latent heat flux in ERA5 and MERRA-
2, and ET is represented by actual evaporation in GLEAM. In addition, the monthly Ep
and P from the Climatic Research Unit (CRU) (https://crudata.uea.ac.uk/cru/data/hrg/)
were used to calculate AI for classifying arid/humid zones across the globe. All these
data were aggregated to the same resolution of SM data and a temporal resolution of
pentads for 1980− 2020.
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