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Abstract

Rising atmospheric dryness is affecting the terrestrial ecosystem 
carbon cycle through its influence on plant physiology. In this 
Review, we synthesize historical and projected trends in atmospheric 
vapour pressure deficit (VPD), a proxy for atmospheric dryness, 
and the mechanisms by which it affects the terrestrial carbon 
cycle. Since the late 1990s, global mean VPD has increased at a 
mean rate of 0.0155 ± 0.0041 hPa yr−1. VPD-driven reductions in 
leaf area index (0.11 ± 0.07 m2 m−2 hPa−1, 1982–2015), gross primary 
production (13.82 ± 3.12 PgC hPa−1, 1982–2015), light use efficiency 
(0.04 ± 0.02 gC MJ−1 hPa−1, 2001–2020) and net ecosystem production 
(5.59 ± 1.15 PgC hPa−1, 1982–2013) have been observed globally. 
However, attributing changes in the terrestrial carbon cycle to VPD 
is still challenging, owing to the confounding influence of other 
environmental factors, such as soil moisture, temperature and radiation. 
The mechanisms underlying plant responses to VPD — which include 
stomatal closure, hydraulic failure, abscisic acid biosynthesis, and 
cascading effects on fires and soil moisture deficits — are also poorly 
constrained, limiting the predictive capabilities of terrestrial carbon 
cycle models. Future research should prioritize establishing global 
VPD-manipulation experiments to enhance understanding of feedbacks 
between VPD, plants and the carbon cycle, and these mechanisms should 
then be integrated into terrestrial carbon cycle models.
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production (NEP). Next, we consider the plant physiological mecha-
nisms underlying these responses, and the cascading impacts on natu-
ral fires and soil water deficit. We then discuss predicted future changes 
in VPD and the implications for carbon cycling. Finally, we recommend 
strategies for field experiments and model algorithm development that 
will further advance understanding of VPD impacts on carbon cycling.

Past changes in atmospheric dryness
Atmospheric dryness has intensified since about the early 1900s4,25,26 
across the majority (78.6%) of the global land area4 (Fig. 1a). Globally 
averaged VPD during the growing season (defined as mean monthly 
temperatures above 0 °C; ref. 4) increased slowly before the late 1990s, 
at a rate of 0.0016 ± 0.0003 hPa yr−1, followed by a tenfold acceleration 
to 0.0155 ± 0.004 hPa yr−1 (ref. 4) (Fig. 1b). This widespread increase in 
VPD was primarily driven by anthropogenic warming, which caused 
an exponential increase in SVP with rising temperature whereas AVP 
increased more gradually4,24. VPD trends of the same direction have 
also been observed during other time periods, although with vary-
ing magnitude (0.012 ± 0.001 hPa yr−1 between 1984 and 201627 and 
0.032 ± 0.004 hPa yr−1 between 2000 and 201928). However, the spa-
tial density of meteorological stations used in the Climate Research 
Unit dataset was highly limited before 1930, especially in tropical and 
boreal areas, potentially introducing uncertainties in the trend in the 
early 1900s29.

The rate of increase in VPD varies between different climate zones. 
Between 1999 and 2015, VPD in arid climates increased 2.3 times faster 
than in humid regions (Fig. 1c) owing to warming being 20–40% higher 
in arid regions, leading to a more rapid increase in SVP30. In addition, 
limited water availability in arid regions reduces plant transpiration 
and lowers AVP31. Growth rate in VPD also varies across different 
biomes owing to vegetation type (Fig. 1d), with the increase slow-
est in forest ecosystems, followed by shrublands, croplands and 
grasslands (Fig. 1d).

The rate of VPD increase also varied between seasons. In gen-
eral, VPD is higher in spring than autumn, owing to the springtime air 
temperature increase elevating SVP before surface and atmospheric 
moisture has recovered from winter dormancy32,33. Conversely, higher 
evapotranspiration and vegetation activity in autumn lead to increased 
AVP and lower VPD32,33. As a result, the increasing trend in VPD dif-
fers between spring and autumn at a rate of 0.0042 ± 0.0053 hPa yr−1 
(1999–2015) (Fig. 1b).

Overall, these heterogeneous spatial and seasonal trends in VPD 
highlight the unequal exposure and vulnerability of global ecosystems 
to increasing atmospheric dryness. These differences emphasize the 
need for region-specific assessments of carbon cycle responses8.

Impact on terrestrial carbon cycling
Atmospheric dryness can substantially affect many processes in the 
terrestrial carbon cycle. VPD impacts on GPP, phenology, plant growth, 
leaf area, NSCs, tree mortality and NEP are now discussed.

Introduction
Warming over land is intensifying, leading to a global increase in 
atmospheric dryness1. Vapour pressure deficit (VPD) — defined as 
the difference between the actual water vapour pressure (AVP) and 
the saturation water vapour pressure (SVP, the maximum potential 
atmospheric water vapour pressure) — is considered a reliable proxy 
for atmospheric dryness2,3. Since the late 1990s, rising VPD has emerged 
as an important indicator of ongoing global climate change4, with SVP 
substantially increasing with air temperature (7–8% per °C)2 as AVP has 
remained relatively stable5. The result of these asymmetric changes 
is a widespread increase in VPD4,6 that is projected to continue and 
potentially accelerate under future climate warming1. As VPD affects 
the water potential gradient between plants and the atmosphere, these 
changes bring uncertain consequences for the biosphere7.

Rising VPD negatively affects the terrestrial carbon cycle in a num-
ber of ways8. Higher VPD increases atmospheric water demand, which in 
turn increases the water potential gradient from plants to atmosphere. 
In turn, stomatal closure, a passive response driven by declining turgor 
pressure9, is induced in plants to limit water loss10 through preventing 
excessive transpiration11. However, stomatal closure also limits gas 
exchange and reduces the concentration of internal cellular carbon 
dioxide, leading to reduced photosynthesis and gross primary produc-
tion (GPP)12. Increased VPD can also negatively affect plants through 
triggering abscisic acid synthesis, accelerating leaf senescence and 
modulating leaf phenology13. Extremely high VPD could even result 
in tree mortality14, reduce regeneration15, alter species composition16 
and increase the risk of vegetation fires17. Thus, VPD has a potentially 
strong influence on the global terrestrial carbon sink18.

The effects of VPD on terrestrial carbon cycling, although rec-
ognized, have probably been underestimated owing to coincident 
variations in other environmental factors8,19,20. Consequently, the rela-
tive impact of VPD on the terrestrial carbon cycle — when compared 
with other factors such as air temperature, soil moisture and solar 
radiation — remains highly debated21,22. Although VPD was thought to 
exert a limited influence on global terrestrial carbon cycle21, emerging 
evidence indicates that the impact of VPD could surpass the effect 
of CO2 fertilization4, soil moisture stress22 and thermal stress19. VPD 
effects have also been simulated in Earth system models (ESMs) cou-
pling global vegetation with the atmosphere, through representing 
leaf stomata23 and plant physiological processes. However, existing 
ESMs overlook VPD impacts on plant phenology, tree mortality and 
vegetation fires24. Thus, a comprehensive synthesis of the underlying 
relationships and mechanisms is needed to accurately predict future 
changes in the global carbon cycle in response to rising VPD.

In this Review, we synthesize observational and model-based 
evidence of global temporal trends and spatial variations in VPD across 
biomes and climate zones. We then explore the consequences for the 
terrestrial carbon cycle by summarizing the direction and magnitude 
of VPD influence on GPP, phenology, plant growth, leaf area index (LAI), 
non-structural carbohydrates (NSCs), tree mortality and net ecosystem 

Fig. 1 | Historical changes in vapour pressure deficit across terrestrial 
ecosystems. a, Spatial distribution of trends in growing-season vapour pressure 
deficit (VPD) (1901–2015)29. Plus signs (+) denote trends significant at the 0.05 
level. b, Left panel, long-term trends in global mean VPD during the growing 
season (blue), and difference between spring (March to May) and autumn 
(September to November) (red). Right panel, global mean VPD and differences 
in VPD for 1901–1998, and 1999–2015. c, Long-term trends (left) and differences 
(right) in global VPD anomalies from 1901 to 2015 by climate zone (based on 

aridity index for 1961–1990; see Supplementary Fig. 1). d, Long-term trends 
(left) and differences (right) in VPD anomalies from 1901 to 2015 by vegetation 
type (classification based on ref. 235). Data aggregated to a spatial resolution of 
0.5° × 0.5°. Error bars represent one standard deviation; *, ** and *** represent 
statistically significant differences at the 0.05, 0.01 and 0.001 levels. Since the 
1900s, the rise in VPD has intensified, with its magnitude differing substantially 
across biomes, vegetation types and time periods.
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Gross primary production
VPD has emerged as a critical driver of terrestrial GPP, correspond-
ing to the rates of photosynthesis in terrestrial ecosystems. GPP has 
a fundamental role in determining the carbon budget of terrestrial 
ecosystems34. Evidence from eddy covariance–light use efficiency 
(LUE) models4 consistently indicates a decreasing trend in GPP as VPD 
increases across a range of ecosystem types35–39. Overall, satellite-based 
estimates indicate that the annual average global GPP decreased by 
13.82 ± 3.12 PgC yr−1 in response to an increase of 1 hPa in VPD4 (Fig. 2e).

Specifically, the response of GPP to VPD varied across veg-
etation types (Fig. 2c). GPP in evergreen broadleaf forests (−378 ±  
7 gC m−2 yr−1 hPa−1) and deciduous broadleaf forests (−216 ±  
7 gC m−2 yr−1 hPa−1) is most sensitive to VPD (Fig. 2c). Conversely, ever-
green needleleaf forests (−29 ± 5 gC m−2 yr−1 hPa−1), deciduous needleleaf 
forests (−49 ± 2 gC m−2 yr−1 hPa−1) and grasslands (−55 ± 1 gC m−2 yr−1 hPa−1) 
exhibit the lowest sensitivity (Fig. 2c). GPP responses to VPD were 
comparable in shrublands (−97 ± 4 gC m−2 yr−1 hPa−1) and croplands 
(−151 ± 6 gC m−2 yr−1 hPa−1) (Fig. 2c).

Negative responses of GPP to increasing VPD emerge beyond a 
certain threshold (Fig. 3a). When VPD is low, any increase might reduce 
stomatal conductance without notably affecting photosynthetic CO2 
assimilation24. As rising VPD is often accompanied by elevated tempera-
tures, warming might conversely enhance photochemistry when the 
VPD constraint is minimal40. When VPD exceeds a certain threshold, 
however, limitations on stomatal conductance surpass those associ-
ated with elevated temperatures, resulting in substantial limitation of 
photosynthetic carbon assimilation41 and reduction in GPP (Fig. 3a). 
Similarly, plants might also raise their LUE under rising VPD when 
VPD remains below a certain threshold, and decline LUE beyond this 
threshold42 (Fig. 3b). Plant water use efficiency also increases initially 
with rising VPD, saturates at a certain VPD threshold and decreases 
beyond the threshold43,44. The combined effect of these factors on GPP 
is challenging to disentangle.

This threshold of VPD influence on GPP varies with vegetation type 
(Fig. 3a). Grasslands, being more sensitive to atmospheric dryness45, 
often display a high capacity for rapid stomatal regulation and have a 
small VPD threshold (5.83 hPa) (Fig. 3a). In contrast, deciduous broad-
leaf forests are equipped with smaller and more numerous stomata 
enabling them to finely adjust their stomatal conductance46. Thus, 
deciduous broadleaf forests can maintain higher stomatal conductance 
and transpiration under elevated VPD, giving them a higher threshold 
of 9.18 hPa (ref. 46) (Fig. 3a). Mixed forests have a relatively low VPD 
threshold (6.59 hPa) (Fig. 3a), possibly owing to species diversity pro-
moting belowground water partitioning47, whereas shrublands have a 
moderate VPD threshold (8.41 hPa) (Fig. 3a).

The role of VPD in regulating vegetation production remains 
unclear owing to strong covariation of VPD with air temperature, soil 
moisture and physiological changes in plants48,49. Satellite-based solar-
induced fluorescence21 suggests that soil moisture has a dominant 

positive influence on global ecosystem production, particularly in 
arid and semi-arid ecosystems. Conversely, VPD impacts were greater 
in humid ecosystems8,48 where increased atmospheric dryness can 
substantially constrict vegetation production22, especially during 
times of drought50,51. Eddy covariance observations also show that 
VPD had a stronger influence on GPP than low soil moisture over the 
growing season in humid and mesic ecosystems52. Further evidence 
from satellite estimates indicated that GPP and VPD have a stronger 
negative correlation in humid regions than in arid regions53. Thus, 
as humid areas contribute more to global vegetation production than 
arid regions, increased atmosphere dryness could substantially affect 
global vegetation production.

Phenology
Increasing VPD can influence plant phenology, affecting both the tim-
ing of autumn leaf senescence and the rate of new leaf expansion54. 
In turn, these changes regulate the overall length of the growing 
season, ultimately affecting vegetation productivity and the terrestrial 
carbon sink32,55.

Prolonged exposure to high VPD can trigger the production of 
abscisic acid in plants, which accelerates autumn leaf senescence56, 
resulting in a shorter growing season57. This effect is particularly evi-
dent in tropical regions, where VPD is the strongest climatic cue for 
shedding of old leaves in humid Amazonian rainforests. Indeed, the 
influence of VPD surpasses precipitation, temperature, radiation and 
soil moisture in regulating plant leaf phenology41,58. Litterfall seasonal-
ity across 100 tropical sites is 11% and 36% in phase with soil moisture 
and precipitation, respectively, but 94% in phase with VPD59,60. In addi-
tion, rising VPD can hasten the autumn leaf senescence in some arid 
ecosystems61,62.

High VPD can also diminish leaf expansion rate63 and, thus, is con-
sidered an important environmental factor affecting leaf expansion in 
crops64, grasses65 and woody plants66. For example, field experiments 
indicate that the rate of maize leaf expansion had a strong negative 
correlation with the atmospheric VPD67, with an average sensitivity 
of 0.2 mm day−1 hPa−1. The primary pathway by which VPD influences 
leaf expansion is by reducing the number of epidermal cells66, which 
correlate with leaf size. Notably, impacts of VPD on leaf expansion rate 
and the number of epidermal cells operate on a longer temporal scale 
than VPD impacts on GPP, with leaf expansion rate decreasing sharply 
2 days after high VPD treatment64.

Plant growth and leaf area index
Rising VPD also strongly inhibits radial (stem diameter) and vertical 
plant growth (tree height). VPD is an important factor in influencing 
radial growth across temperate and tropical forests68–70. For example, 
in a temperate deciduous forest, stem growth decreased linearly by 
1.7 mm² per day for every 0.1 kPa increase in VPD71. Similar limitations 
to stem diameter growth in response to VPD have been observed in 

Fig. 2 | Sensitivity of terrestrial carbon cycling to rising atmosphere dryness. 
a, Dominant vegetation type (classification based on ref. 235 and over 50% areal 
abundance236,237, aggregated to 0.5° × 0.5° spatial resolution). b, Mean sensitivity 
of leaf area index (LAI) (SLAI, 1982–2015, ref. 4), defined as the slope of partial linear 
correlation between ecosystem carbon cycle variables and vapour pressure deficit 
(VPD) using a multiple regression approach4 (left), and mean values by vegetation 
type (right). c, As in b, for gross primary production (GPP) (SGPP, 1982–2015, ref. 4). 
d, As in b, for net ecosystem production (NEP) (SNEP, 1982–2013, ref. 18). e, Summary 

of the known and unknown global sensitivity of terrestrial ecosystem carbon 
cycle variables to VPD. Error bars represent one standard error. Global estimates 
of VPD impacts on LAI, GPP, light use efficiency (LUE) and NEP are available 
across terrestrial ecosystems, but quantitative characterizations of the impacts 
on phenology, plant growth, non-structural carbohydrates and tree mortality 
are lacking. CRO, cropland; DBF, deciduous broadleaf forest; DNF, deciduous 
needleleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf 
forest; GRA, grassland; SHR, shrubland; TER, terrestrial ecosystem respiration.
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boreal forests72. Indeed, VPD has a greater influence on tree radial stem 
growth than rainfall and soil moisture, especially for trees growing in 
humid or semi-humid forests73, and some semi-arid ecosystems74,75. 
Radial growth in trees determined primarily by growing-season cambial 
activity is greater in months with low VPD than high VPD conditions, 
supporting the substantial impact of VPD on tree radial growth via 
constrained cambial activity76.

Rising VPD also induces reduced vertical growth in plants77. 
Elevated VPD should favour species of shorter stature77,78 as taller 
plants are more vulnerable to hydraulic failure via embolism resulting 
from atmospheric dryness79. Numerous experiments demonstrate that 
plant height is notably affected by long-term exposure to high VPD, 
with plant height and VPD being negatively correlated77,80. Indeed, 
evidence for 112 species shows that the greater the increase in VPD, 
the stronger the decrease in plant height77. In addition, the height of 

annual or biennial plants is more strongly affected by VPD than other 
plant types77.

Rising VPD could affect the terrestrial carbon cycle by limiting LAI 
growth81,82. The global greening trend observed in satellite-derived LAI 
and Normalized Difference Vegetation Index (NDVI) prior to the late 
1990s has since stagnated and potentially reversed in response to the 
marked increase in VPD4. Globally, as VPD increased, annual mean LAI 
decreased at a rate of 0.11 ± 0.07 m2 m−2 hPa−1 (Fig. 2e). Satellite-derived 
near-infrared reflectance of vegetation (NIRv) suggests that approxi-
mately 69.3% of vegetated areas show negative correlations between 
the interannual variability of NIRv and VPD during 1982–2015 (ref. 18).

The magnitude of the LAI response to rising VPD varies across 
biomes, ranging from −0.086 to +0.051 m2 m−2 hPa−1 (Fig. 2b). Specifically, 
negative LAI responses to VPD were found in evergreen broadleaf forests 
(−0.086 ± 0.029 m2 m−2 hPa−1), croplands (−0.067 ± 0.007 m2 m−2 hPa−1),  
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deciduous broadleaf forests (−0.058 ± 0.012  m2 m−2 hPa−1), shrub-
lands (−0.036 ± 0.004 m2 m−2 hPa−1) and grasslands (−0.031 ±  
0.002 m2 m−2 hPa−1). Conversely, positive responses were observed in 
deciduous needleleaf forests (0.051 ± 0.004 m2 m−2 hPa−1) and ever-
green needleleaf forests (0.003 ± 0.009 m2 m−2 hPa−1). These positive 
responses are probably attributable to needleleaf forests using an 
anisohydric strategy to maintain stomatal openings and extract water 
from deep soil layers under high VPD conditions47,83,84.

Atmospheric dryness could also affect the growth of plant organs 
through changes in carbon allocations85. Plants commonly use adap-
tive strategies optimizing carbon allocations between leaves and roots 
to ensure survival and growth under chronic water stress86,87. How-
ever, rising VPD can restrict plant growth by reducing the allocation 
of carbon from photosynthesis to sapwood88, slowing down radial 
enlargement89,90. In addition, plants under drought conditions pref-
erentially allocate carbon to root systems at the cost of stem radial 
expansion91. For example, tropical moist forests tend to constrain 
allocations to stems and roots92, allocating more carbon to grow-
ing new leaves at the beginning of the dry season ( July–September) 
when incoming shortwave downwelling radiation increases55,93–96. 
Conversely, dry-season old leaf abscission in plants experiencing 
severe dry-season water stress can avoid hydraulic failure and carbon 
starvation97–99. Thus, VPD influences seasonality in leaf shedding and 
leaf flush processes via coordinating carbon allocation55,100.

Non-structural carbohydrates
Rising VPD also affects NSCs, which are carbohydrates not involved in 
the formation of cell walls or other structural components in plants. 
NSCs primarily exist in the form of soluble sugars (such as glucose, 
fructose, sucrose) and starch, serving as mobile and rapidly degradable 
carbon sources and energy reserves within plant tissues101. Short-term 
high VPD could temporarily promote NSC accumulation as a stress 
response102. However, long-term exposure to elevated VPD tends to 
suppress photosynthesis, thereby reducing the synthesis of soluble 
sugars and starch, and NSC accumulation103.

As VPD increases, plants often simultaneously break down starch 
to generate soluble sugars to sustain osmotic regulation and energy 
supply. Under prolonged high-VPD stress, plants might also prioritize 
allocation of limited carbon resources to roots or storage organs 
(such as starch accumulation) rather than leaves104. In turn, canopy 
photosynthesis is limited with negative feedbacks on NSCs accu-
mulation. Thus, together, high-VPD-induced declines in photosyn-
thesis and increases in the consumption of soluble sugars limit NSC 
accumulation105.

Tree mortality
Rising VPD also accelerates tree mortality78, reducing ecosystem car-
bon storage capacity and promoting carbon emissions24,106. Rising 
VPD is recognized as a major driver of tree mortality across boreal 
forests39, temperate forests107 and moist tropical forests78,108. Estimates 
quantifying the sensitivity of tree mortality rates to rising VPD range 
from 0.36% hPa−1 to 1.58% hPa−1 (Supplementary Fig. 2). However, 
no global-scale quantitative evaluation of tree mortality in response 
to rising VPD exists.

The influence of VPD on tree mortality differs between tree 
species109–114. At the regional scale, slow-growing species and small 
trees exhibit a lower mortality response, whereas fast-growing species 
and large trees are less resistant to atmosphere dryness16,115. In addition, 
the risk of mortality in deciduous species (11%) is greater than that of 

evergreen species (0.55%)116. These differences among tree species 
might shift ecosystems towards slow-growing species under increased 
VPD, reducing terrestrial carbon sequestration rates117.

Mortality events can also eliminate specific plant species, decreas-
ing plant diversity and increasing ecosystem susceptibility to water 
stress118. For example, species richness has declined rapidly in response 
to rising VPD in the humid Amazon evergreen forests119 (Supplementary 
Fig. 3). Similarly, in some arid ecosystems, high VPD during the warm 
season exerts upregulated effects on the mortality, with deciduous 
broadleaf trees exhibiting higher mortality rate than conifer species120.

Net ecosystem production
Rising VPD greatly affects terrestrial NEP. Negative impacts of rising VPD 
on NEP have been observed across a range of ecosystem types, includ-
ing forests, grasslands, croplands, tundra and coastal wetlands121–123. 
For example, eddy covariance observations at 12 managed grasslands 
in New Zealand demonstrated a deficit in NEP in response to rising 
VPD that was independent of soil moisture conditions124. However, 
global-scale observations are lacking.

Twelve terrestrial ecosystem models indicate a global mean sen-
sitivity of NEP to rising VPD of −5.59 ± 1.15 PgC hPa−1 (ref. 18) (Fig. 2e). 
The response across ecosystem types was highly variable (Fig. 2d), 
with the highest sensitivity in croplands (36.71 ± 2.13 gC m−2 yr−1 hPa−1), 
evergreen broadleaf forest (36.21 ± 3.02 gC m−2 yr−1 hPa−1), and decidu-
ous broadleaf forest (33.78 ± 2.44 gC m−2 yr−1 hPa−1), whereas evergreen 
needleleaf forests (8.09 ± 1.10 gC m−2 yr−1 hPa−1) and deciduous needle-
leaf forests (4.76 ± 0.66 gC m−2 yr−1 hPa−1) exhibited lower sensitivities 
(Fig. 2d). The low sensitivities in shrublands and grasslands are prob-
ably due to their low stomatal conductance and deep rooting systems, 
which enhance their ability to access water from deep soil layers125,126.

The negative impacts of VPD on ecosystem NEP were primarily 
observed under high-VPD conditions, as with GPP owing to its strong 
influence on NEP. Atmospheric dryness does not limit carbon uptake 
when VPD is low125,127. As VPD rises, ecosystem NEP initially increases 
until it reaches a peak, after which it begins to decline. For example, 
NEP peaked when VPD increased to 15.4–19.8 hPa at one grassland and 
two cropland sites in the US Corn Belt127. However, the optimum VPD 
for NEP has been reported to be 25–30 hPa for several other croplands 
in North America128,129. Similar VPD thresholds have been observed in 
coastal mangrove ecosystems (approximately 25.0 to 29.5 hPa)123, with 
NEP rising as VPD increased to around 20 hPa before steeply decreasing 
under higher VPD130.

Overall, global in situ and satellite observations have quantified 
the negative impacts of rising VPD on LAI, GPP, LUE and NEP across ter-
restrial ecosystems. Conversely, quantitative information on impacts 
on other terrestrial carbon cycles, such as phenology, plant growth, 
NSCs and tree mortality, is still scarce.

Mechanisms
Rising VPD primarily affects terrestrial carbon cycle via two pathways88, 
one involving several carbon sequestration processes and another influ-
encing processes related to plant mortality. The role of the mechanisms 
underlying these processes and acclimation effects in determining 
the impact of changing VPD on the carbon cycle are now discussed.

Stomatal closure and hydraulic failure
Stomatal conductance response to VPD strongly influences changes in 
carbon cycle processes under increasing atmosphere dryness. When 
water loss from transpiration exceeds uptake by roots, plants reduce 
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the stomatal aperture or even close stomata entirely to minimize 
water loss131–134. This action reduces CO2 passage into leaf cells from 
the atmosphere, decreasing photosynthesis131–134 (Fig. 4) and directly 
affecting carbon uptake, sinks, tree growth and survival108,135. Decreased 
stomatal conductance also alters physiological processes in plants, 
further limiting photosynthesis136. For instance, leaf stomatal closure 
induced by rising VPD increases mesophyll resistance137, thereby reduc-
ing the rate of CO2 fixation by rubisco and leading to increased water 
and nitrogen costs associated with carbon acquisition. In addition, 
decreased photosynthesis leads to insufficient carbon substrate for 
metabolism and a limited supply of NSCs, ultimately causing carbon 
starvation109,138, a major factor contributing to global tree mortality.

Stomatal conductance responses to VPD also vary between plants 
with different water regulation strategies139,140. For instance, isohydric 
plants typically adjust their stomatal openings to limit water loss, 
whereas anisohydric plants regulate xylem embolisms to limit water 
loss while still maintaining stomatal opening140,141. These divergent 
stomatal responses to VPD differentially affect vegetation growth and 
the terrestrial carbon cycle. For example, productivity in anisohydric 
ecosystems (such as grasslands) across the United States is three times 
more sensitive to VPD than that in isohydric ecosystems36. Yields of 
other anisohydric crops, including rice and maize, also strongly depend 
on seasonal VPD136. However, responses to VPD might be confounded 
by temperature stress77,142. As high temperatures often accompany high 

VPD, plants might increase or sustain stomatal conductance to main-
tain optimal leaf temperatures for photosynthesis, particularly under 
heat shock scenarios that can irreversibly damage photosynthetic 
machinery142–144.

Regulating xylem water transport is another adaptive strategy that 
plants use in response to atmospheric dryness. High VPD increases the 
water potential gradient across the atmosphere, plant and soil, decreas-
ing plant water potential21 (Fig. 4). Hydraulic failure might occur when 
VPD-induced water losses surpass water uptake, causing high tension 
of xylem-bound water145 and xylem cavitation146. Hydraulic failure, 
together with carbon starvation, are the two primary theoretical expla-
nations to tree mortality induced by drought147–151. Hydraulic failure 
induced by high VPD might further impair the nutrient uptake152 and 
indirectly limit plant growth, as transpiration helps to drive nutrient 
migration to the root153 and solute transport to shoots154. The rate of 
nutrient transport in the xylem notably decreases as hydraulic failure 
occurs, leading to reduced absorption of mineral nutrients155, including 
nitrogen, phosphorus, potassium, magnesium and iron152,155–158.

Abscisic acid biosynthesis
The biosynthesis of abscisic acid, a phytohormone associated with 
drought-induced plant stress, is highly sensitive to the water potential 
of leaves159. As leaf turgor pressure declines160–162, plants upregulate 
various stress-induced solutes and proteins and promote abscisic acid 
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biosynthesis162–165. Elevated abscisic acid levels can be observed just 
20 minutes following VPD increasing from 7 to 15 hPa (ref. 166). Plants 
under high-VPD conditions exhibit increased leaf abscisic acid content 
compared with those in low-VPD environments167.

Accumulated abscisic acid is recognized by intracellular receptor 
proteins168,169, initiating signal transduction pathways that activate 
anion channels in guard cells. This activation leads to an efflux of ani-
ons, depolarizing the plasma membrane and subsequently activat-
ing potassium (K+) efflux channels, resulting in the loss of various 
ions and water in the guard cells13,170,171. The outcome is a reduction 
of vacuolar turgor pressure and volume within the guard cells, which 
leads to stomatal closure. Abscisic-acid-deficient mutants do not 
exhibit an increase in foliar abscisic acid levels or stomatal closure 
response when VPD rises162,172,173 (Fig. 4), indicating that abscisic acid 
has a central role in VPD-induced stomatal closure. However, despite 
a slower response in abscisic-acid-insensitive mutants, they can still 
close their stomata under high-VPD conditions9,174 which suggests that 
stomatal response to VPD involves both abscisic-acid-dependent and 
non-abscisic-acid-dependent components.

Apart from regulating stomatal conductance and influencing 
plant growth, abscisic acid accumulation in leaves can affect other 
critical physiological processes within plants13,175,176. Abscisic acid 
content in aerial tissues can limit the rate of new leaf expansion63, 
influence leaf morphology177,178, and regulate flower development and 
sexual differentiation161,179,180. Additionally, abscisic acid accumulation 
accelerates the senescence of older leaves through transcriptional 
regulation13, which alters leaf phenology and canopy structure181. How-
ever, it remains unclear whether abscisic acid produced in response to 
soil drying or high VPD can directly trigger leaf senescence, or whether 
it accelerates senescence indirectly by reducing stomatal conductance 
and photosynthesis182.

Vegetation fires and soil moisture deficits
VPD also affects the carbon cycle through cascading effects on fires, 
which can induce large-scale carbon emission and plant mortality183. 
Rising VPD contributes to larger fire sizes and heightened fire prob-
ability, reflecting the increased flammability of fuels under atmospheric 
dryness184,185. Observed sensitivities of fire activity to VPD (for exam-
ple fire area and fire probability) vary by region. For instance, fire area 
sensitivities vary between the western US (Sfire area = 422 km² hPa⁻¹), 
Europe (246 km² hPa⁻¹), China (130 km² hPa⁻¹) and boreal Siberia 
(1,154 km² hPa⁻¹ below 3.6 hPa) (Supplementary Fig. 2). VPD also con-
tributes to interannual variability in fire activity across continents186, 
advances fire-season onset187 and impedes post-fire recovery by creating 
unsuitable conditions for seedling survival and regeneration188.

Atmospheric aridity enhances the probability of fire across vari-
ous vegetation types globally189, but the pathways of VPD influence on 
fire activities are multifaceted. High VPD reduces moisture content 
in organic matter190,191, desiccates plant tissues, increases flammabil-
ity, and promotes ignition, spread and combustion17,192. For example, 
satellite-based observations indicate a 45% decrease in live fuel mois-
ture and a 2% decrease in dead fuel moisture for every 10-hPa increase 
in VPD193. Plant physiological trait responses to VPD can notably affect 
fire behaviour. For example, the increase in burned area per unit rise in 
VPD is greater in forests dominated by species with open stomata or 
shallow root systems than in forests dominated by species with tighter 
stomatal control185. Plant control over transpiration rates through sto-
matal closure influences water regulation and ignition risk: for instance, 
isohydric plants might help to reduce fire spread more than anisohydric 

plants185. Consequently, the ongoing rise in VPD might exacerbate fire 
regimes globally17,194.

Pronounced high VPD also exhibits cascading effects on soil 
moisture10,195. High VPD often enhances atmospheric evapora-
tive demand, promoting evapotranspiration and accelerating soil 
drying10,195 (Fig. 4). This effect is particularly pronounced in humid 
ecosystems24, where soil moisture is initially sufficient to sustain 
evapotranspiration196. In addition to the impact of high VPD, reduced 
soil moisture further curtails evapotranspiration by restricting water 
availability and triggering additional stomatal closure197, limiting veg-
etation production and causing large-scale plant mortality. As evapo-
transpiration declines, a greater proportion of net radiation is allocated 
to sensible heat flux, ultimately elevating air temperatures198. Thus, 
VPD effects are compounded by effects with mutual causes, such as 
soil water deficit, that further complicate the quantification of VPD 
impacts on carbon cycles20,88.

Plant and ecosystem acclimation to rising VPD
Over time, plant acclimation, whereby plants adjust to high atmos-
pheric dryness, could to some extent mitigate the negative impacts of 
rising VPD on the carbon cycles77. Plants under high VPD often exhibit 
elevated chlorophyll content in their canopy leaves199. Plants can also 
increase leaf nitrogen and phosphorus concentrations as part of their 
acclimation to rising VPD77. Additionally, plants often decrease their 
number of leaves and reduce tree height to acclimate to high-VPD 
conditions77, as vulnerability to embolism increases with plant height79.

At the ecosystem level, species composition might change sub-
stantially in acclimation to increasing VPD. In humid ecosystems, 
recruitment and growth rates of species with high hydraulic safety 
are substantially higher than those with low hydraulic safety15. Species 
with high hydraulic safety invest in enhanced mechanical stability 
and defence, leading to narrower xylem conduits, denser wood and 
lower xylem conductivity. Consequently, these species exhibit slower 
growth rates and reduced mortality risk16,200. By comparison, plants in 
arid regions typically reduce evapotranspiration as VPD increases to 
effectively conserve soil moisture10. This adaptive acclimation strategy 
to cope with aridity preserves water for periods of low atmospheric 
demand, thereby enabling ecosystems to fix carbon with relatively 
lower water loss201.

The mechanisms by which atmospheric dryness affects carbon 
cycling in terrestrial ecosystems manifest in reduced plant stomatal 
conductance, increased risk of plant hydraulic failure, and promotion 
of the abscisic acid biosynthesis, which all substantially restrict plant 
growth. Atmospheric dryness intensifies the frequency and severity 
of wildfires and leads to soil drought, which indirectly decrease ter-
restrial carbon sinks. However, plants and ecosystems also exhibit 
acclimation, which can to some extent mitigate the negative impacts 
of atmospheric dryness.

Future changes in atmospheric dryness
Projections from ESMs consistently show that VPD will increase under 
anthropogenic warming, with the rate and magnitude of increase being 
enhanced under scenarios of high greenhouse gas emissions. These 
changes are not uniform across regions and could profoundly affect plant 
physiology, ecosystem productivity and the stability of the carbon cycle.

Projected changes in VPD
Global atmospheric dryness will continue to increase owing to anthro-
pogenic warming202. ESMs consistently indicate a global increase in VPD 
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from intermediate (Shared Socio-economic Pathway 2-4.5, SSP2-4.5) to 
high (SSP5-8.5) emission scenarios, highlighting the impact of green-
house gas emissions on atmospheric dryness27,203. Under SSP1-2.6, 
a low-emission scenario, VPD is projected to stabilize around 2060, 
with a net increase of less than 1 hPa in the twenty-first century202. The 
increase in VPD is more pronounced in high-emission scenarios, par-
ticularly under SSP5-8.5, which projects that the global mean increase in 
VPD will exceed 3 hPa between 2020 and 2100 (ref. 202). However, Cou-
pled Model Intercomparison Project (phase 6) (CMIP6) ESMs probably 
underestimate future decreases in near-surface relative humidity204, 
implying that the future VPD might also be underestimated.

Although all scenarios project increasing trends, the rate of 
increase in VPD will vary across different climate zones (Fig. 5). The most 
rapid increases in VPD are expected in arid regions, with the trend in 
hyper-arid areas projected to reach approximately 0.13 ± 0.03 hPa yr⁻¹ 
under SSP5-8.5 (Fig. 5e). A slower rate of VPD increase in hyper-arid 
regions is projected under SSP2-4.5 and SSP1-2.6 (0.05 ± 0.02 hPa yr⁻¹ 
and 0.02 ± 0.01 hPa yr⁻¹, respectively). Such substantial increases in 
VPD could notably intensify the frequency and severity of droughts, 
further exacerbating water stress14,190.

Moderate trends in VPD are projected in arid regions, increasing 
at 0.08 ± 0.02 hPa yr⁻¹ under SSP5-8.5 with slower rates of change 
under SSP2-4.5 and SSP1-2.6. In comparison, both dry sub-humid and 
humid regions will experience relatively small increases in VPD. Under 
SSP5-8.5, the VPD trend will reach 0.04 ± 0.01 hPa yr⁻¹ in dry sub-humid 
regions and 0.03 ± 0.01 hPa yr⁻¹ in humid regions. Smaller trends are 
projected under SSP2-4.5 and SSP1-2.6.

Thus, higher emissions will lead to notable increases in VPD across 
all regions, particularly in dry areas. Conversely, lower emissions will 
slow the rate of increase and help to maintain more stable conditions, 
especially in humid regions.

Potential impacts on future carbon cycle
Most state-of-the-art ESMs focus on projecting future changes in GPP 
and often predict a continuous increase in global GPP owing to the 
CO2 fertilization effect205. However, substantial uncertainties remain 
regarding the complex environmental impacts on GPP20,206. The effects 
of other meteorological variables could counteract the positive feed-
back between GPP and rising CO2 concentration, especially concurrent 
increases in VPD205.
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The Common Land Model207, integrated with a prognostic veg-
etation phenology model, aims to account for these concurrent envi-
ronmental factors. It projects uptrends in annual mean LAI and total 
GPP under SSP1-2.6, but downtrends under SSP2-4.5, SSP3-7.0 and 
SSP5-8.5 by 2100. These trends are largely attributed to the increasing 
atmospheric dryness208. This response is in agreement with independ-
ent projections from ESMs that estimate a transition from positive 
(0.05 ± 0.12 gC m−2 ppm−1 during 1982–1996) to negative indirect CO2 
effects (−0.05 ± 0.03 gC m−2 ppm−1 during 2086–2100) on the vegeta-
tion carbon uptake209. As the climate continues to warm, global VPD 
is likely to increase substantially, enhancing the impacts of VPD on the 
terrestrial ecosystem carbon cycle.

The limited number of existing projections of VPD impacts on 
forest mortality consistently highlight risks of increasing background 
mortality and die-off events106. Empirical models predict substantial 
losses of conifer trees across the southwestern region of North America 
around the year of 2050 owing to increased atmospheric dryness106. 
Additionally, beyond traditional metrics like soil moisture, VPD has 
been identified as the most important predictor of fire probability in 
some areas. For example, in Australia, fire risk in mesic forests would 
increase by 65% as VPD rose from 25 to 70 hPa (ref. 210). The probability 
of fire activity could even be doubled with each unit increase in VPD 
in subtropical China211.

However, there is still large uncertainty among ESMs simulating 
the impacts of atmospheric drought on the carbon cycle. For instance, 
ESMs tend to underestimate the important role of VPD in regulating 
diurnal photosynthesis212. Eddy covariance observations indicate 
that VPD is the dominant driver contributing to the widespread after-
noon depression of photosynthesis in terrestrial vegetation globally. 
Conversely, the majority of ESMs simulate an increase in afternoon 
photosynthesis212. In addition, little attention has been given to assess-
ing the performance of ESMs in terms of the impact of atmospheric 
dryness on the other variables of carbon cycle.

Summary and future perspectives
Atmospheric dryness has substantially increased with climate 
warming4. Since the late 1990s, global VPD has increased at a rate 
of 0.0155 ± 0.0041 hPa yr−1, approximately an eightfold accelera-
tion in the rate of drying. These changes in VPD have affected the 
terrestrial carbon cycle. At the global scale, rising VPD can reduce 
GPP by 13.82 ± 3.12 PgC hPa−1, LUE by 0.04 ± 0.02 gC MJ−1 hPa−1, NEP 
by 5.59 ± 1.15 PgC hPa−1 and LAI by 0.11 m2 m−2 hPa−1. The mechanisms 
underlying these responses to rising VPD include stomatal closure 
to constrain vegetation photosynthesis, induced hydraulic failure to 
intensify plant mortality, enhanced abscisic acid biosynthesis to regu-
late leaf phenology, synthesis of plant NSCs and structural growth. The 
resultant cascading effects of VPD lead to increased occurrence and 
severity of fires and soil moisture deficits. VPD is projected to increase 
by between ~1 hPa (SSP1-2.6) and 3 hPa (SSP5-8.5) by the end of the 
twenty-first century.

Advances in the implementation of VPD-manipulation experi-
ments are needed to address knowledge gaps. To provide global-scale 
insights, future experiments should focus on reaching a consensus 
regarding the exact mechanisms by which plant stomata respond to 
VPD213. Comprehensive physiological variables should be measured 
to examine their individual impacts on stomatal conductance. Quan-
tifying how stomatal conductance responds to interactions between 
variables is also important. The impacts of VPD on leaf phenology 
and structural growth in temperate and boreal climate zones should 

be a particular focus, given the important control of temperature on 
leaf phenology and plant growth relative to other environmental vari-
ables at high latitudes61. It is also challenging to quantify global-scale 
VPD-induced tree mortality via cascading effects on wildfires and soil 
water deficits138. The contributions of rising VPD to wildfires and soil 
dryness should be quantified via in situ and satellite observations. 
In addition, the mechanisms by which wildfires and soil dryness affect 
tree mortality should be investigated.

VPD impacts on carbon cycles also need to be isolated from the 
influence of other climate variables. Attempts have been made to 
isolate VPD impacts using partial correlation analysis, data binning 
and machine learning approaches8,21. However, global manipulation 
experiments are needed to quantify the impacts of VPD on carbon 
cycles through controlling other environmental factors such as soil 
moisture, temperature and radiation.

VPD-manipulation experiments should also account for hetero
geneity in species-dependent and biome-dependent responses 
to rising VPD at the global scale. Experiments should quantify the 
responses of different plant species and ecosystems to high VPD77,142. 
VPD-manipulation experiments should also fully consider the une-
qual exposure of various ecosystems and climate zones to increas-
ing atmospheric dryness, helping to establish region-specific and 
time-specific scenarios. Building more extensive and representative 
VPD-manipulation networks, operating over a range of spatial scales, 
is essential to evaluate the potential impacts of VPD on carbon cycle 
processes.

In addition, VPD-driven physiological processes need to be inte-
grated into carbon cycle models. Despite substantial progress in model-
ling VPD impacts since the late 1990s, process-based model algorithms 
representing responses in photosynthesis, hydraulic transport, leaf 
phenology and mortality are still needed.

Plant stomata models that simulate stomatal conductance 
responses to elevated VPD can capture changes associated changes 
in photosynthesis. However, existing models typically assume a fixed 
proportional relationship between stomatal conductance and VPD, 
when actually this relationship varies across species214. Field and 
satellite-based observations of hydraulic traits215 and turgor responses216 
in various vegetation types are needed to inform these algorithms to 
more accurately represent hydraulic responses to rising VPD.

Persistent knowledge gaps in the simulation of plant hydraulic 
transport in response to rising VPD also need to be addressed. Vulner-
ability curves, which describe conductivity changes in xylem or other 
conduits in response to water potential, are widely integrated into 
existing hydraulic models146,217,218. However, these models typically 
assume time-invariant vulnerability curves and fail to account for 
dynamic embolism refilling or the formation of new xylem in response 
to hydro-climatic stresses219. In addition, most hydraulic models focus 
on xylem vulnerability curves and omit root and leaf vulnerability 
curves146. Therefore, dynamic vulnerability curves across the plant 
system should be integrated in plant carbon-cycle and growth models 
to reduce the uncertainties in simulating plant survival, vegetation 
productivity and associated carbon sink capacity116.

To support these advances in simulating plant response to mois-
ture stresses, comprehensive measurements of water potentials and 
vulnerability curves for roots, stems and leaves are needed. Addition-
ally, instead of existing one-layer schemes, hydraulic models should 
use multiple-layer canopy models to capture within-canopy variability 
of VPD and leaf temperature, which can vary substantially across the 
canopy profile220.
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Leaf phenology models typically rely on temperature as a key 
driver when simulating seasonal canopy leaf dynamics, represented as 
leaf flushing and shedding221. However, these models perform poorly 
in tropical regions221 owing to the lack of representation of VPD-related 
mechanisms and their critical role in this climate zone100. This limitation 
can be overcome by incorporating VPD-driven phenology models into 
ESMs to capture the seasonality of LAI and leaf age55,222. Future research 
should determine VPD influence on plant hormone signalling and 
physiological responses, thereby improving the predictive capability 
of phenology models.

Plant growth models that simulate wood formation typically omit 
the influence of VPD on this process, despite water stress effects being 
incorporated into wood formation models223,224. Models such as TreeR-
ing 3225 and CAMBIUM226 use stomatal resistance and xylem water 
potential to quantify the influence of soil moisture stress on wood 
formation223, and other models include turgor pressure as a driver of 
growth in cambial and enlarging cells227,228. However, these models 
often overlook relationships between VPD and stomatal resistance11, 
xylem water potential229 and turgor pressure85.

Empirical and process-based models should better represent the 
role of VPD as a driver of tree mortality230, which could be achieved 
through improved representation of plant hydraulic failure215 and 
integration of plant traits231. For instance, key plant traits strongly deter-
mine the threshold of tree mortality under severe atmospheric and 
soil water stress, such as the water potential that corresponds to a 50% 
loss in hydraulic conductivity231. Models should also represent plant 
trait variability within species driven by chronic stress, biotic attack, 
competition, past damage and other factors15,231. Starvation-related 
mechanisms should also be incorporated into tree mortality models138. 
For instance, phloem transport failure can intensify localized carbon 
starvation and should be integrated232,233.

Existing tree mortality models also often overlook plant acclima-
tion. Plants can modify root depths, leaf area and other critical traits 
in anticipation of severe droughts, thereby improving their chance 
of survival138. Finally, processes influencing mortality, such as infec-
tious plant diseases, often concurrent with changes in VPD, are not yet 
adequately incorporated into ecosystem process models234. Advancing 
understanding of the impacts of rising VPD on plants will therefore 
require coordinated efforts to extend experimental and empirical 
observations to develop robust algorithms that can be integrated into 
complex modelling frameworks.

Data availability
All the data that support the findings are openly available. The air 
temperature and AVP from the Climate Research Unit are available at 
https://crudata.uea.ac.uk/cru/data/hrg/. The annual precipitation and 
potential evapotranspiration from the TerraClimate data are obtained 
from https://climate.northwestknowledge.net/TERRACLIMATE/
index_directDownloads.php. The leaf area index and gross primary 
production from the Global Land Surface Satellite (GLASS) are avail-
able at https://www.glass.hku.hk/. The NEP from the Trendy data is 
obtained from https://globalcarbonbudgetdata.org/. The global 
land cover change dataset is available at https://gee-community-cat-
alog.org/projects/glc_fcs/. The eddy covariance observations from 
FLUXNET2015 are available at https://fluxnet.org/data/fluxnet2015-
dataset/. The CMIP6 dataset is available at https://esgf-node.llnl.gov/ 
search/cmip6/.
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