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Abstract
Extreme precipitation events (EPEs) have garnered considerable social concerns due to their hazardous and destructive 
nature. To identify the possible causes of EPEs in China, this paper presents an in-depth investigation of how EPEs coincide 
with atmospheric conditions, i.e., atmospheric instability, moisture availability and moisture convergence, as well as driv-
ing variables, i.e., vertical velocity, relative humidity and air temperature. Specifically, the classic coincidence probability 
is devised to explicitly relate 72-h EPEs to convective available potential energy (CAPE), precipitable water (PW), vertical 
velocity at 700 hPa (verV), relative humidity at 700 hPa (RH), average air temperature between 850 and 500 hPa (Tavg) as 
well as air temperature difference between 850 and 500 hPa (Tdiff). The results show that at the annual timescale, EPEs in 
Southeast and Southwest China are dominantly controlled by verV, in North and Central China by PW and in Northwest China 
by CAPE roughly. At the seasonal timescale, the spatial distributions of coincidence probability values and “competition” 
among atmospheric conditions and driving variables exhibit similar patterns as observed throughout the entire year except 
for December–January–February. Moreover, the diagnostic plots generated for three case study regions in China provide 
valuable insights into the temporal evolution of precipitation events, cumulative distribution function curves of influential 
factors and dominant controlling factors of EPEs. This paper contributes to understandings of the dominant controlling 
factors of EPEs for the whole of China. The spatial patterns of EPEs and their related atmospheric conditions and driving 
variables yield useful information for rainstorm forecasting and disaster risk management.

Plain Language Summary
Atmospheric conditions, i.e., atmospheric instability, moisture availability and wind convergence, and driving variables, 
i.e., vertical velocity, relative humidity and air temperature, play important parts in the occurrence of extreme precipitation 
events (EPEs). In this paper, the 72-h EPEs in China are explicitly related to atmospheric conditions and driving variables 
by using the classic coincidence probability. Specifically, the relationships are measured by the ratio of the time when pre-
cipitation and the given factor both reaching at extreme to the whole time in EPEs. Assuming that the factor exhibiting the 
highest coincidence probability influences EPEs the most, it is observed that at the annual timescale, vertical velocity at 
700 hPa has the greatest impact on EPEs in Southeast and Southwest China as well as part of Northeast China, precipitable 
water in North and Central China and convective available potential energy in Northwest China. Also, it is found that the 

 * Tongtiegang Zhao 
 zhaottg@mail.sysu.edu.cn

1 Key Laboratory of Water Network Engineering 
and Scheduling of the Ministry of Water Resources 
and Southern Marine Science and Engineering Guangdong 
Laboratory (Zhuhai), School of Civil Engineering, Sun Yat-
Sen University, Guangzhou, China

2 Department of Land Surveying and Geo-Informatics, The 
Hong Kong Polytechnic University, Hong Kong, China

3 School of Civil Engineering and Transportation, State Key 
Laboratory of Subtropical Building Science, South China 
University of Technology, Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-024-07143-z&domain=pdf
http://orcid.org/0000-0001-6943-258X


 Q. Ou et al.

results at the seasonal timescale are consistent with that throughout the entire year except for winter. Overall, the results of 
this paper can help us to understand the possible causes of EPEs and serve in rainstorm forecasting and risk management at 
grid cell level for the whole of China.

1 Introduction

Extreme precipitation events (EPEs) have garnered con-
siderable social concerns due to their hazardous and 
destructive nature (Visser et al. 2022). Associated with 
a wide array of natural hazards (Ali et al. 2021; Prein 
et al. 2017), EPEs can lead to substantial losses of life 
and inflict significant economic damages (Hoeppe 2016; 
Mahapatra et al. 2018). It is estimated that EPE-related 
hazards cause an annual financial loss of over 50 billion 
dollars and approximately 250,000 fatalities worldwide 
(Dube and Rao 2005; Min et al. 2011). In China, the Yang-
tze River basin was devastated by severe rainstorm floods 
in 1998, resulting in economic losses surpassing 22 billion 
dollars and claiming the lives of over 3000 individuals 
(Zhou et al. 2019). The flood season of 2016 witnessed 
1192 counties being ravaged by rainstorm floods, incur-
ring direct economic losses of approximately 20 billion 
dollars (Zhou et al. 2019). In July 2021, Henan Province 
experienced an extreme rainstorm disaster that impacted 
14.814 million individuals, with a direct economic loss of 
about 18 billion dollars (Liu et al. 2023). The impacts of 
EPEs are particularly pronounced in countries like China 
owing to its vast geographical expanse, diverse topography 
and densely populated regions.

The occurrence of EPEs is influenced by thermodynamic 
and dynamic factors (Ali and Mishra 2018; Gorman 2012; 
Rudolph and Friedrich 2014). Focusing on the thermody-
namic factors, responses of extreme precipitation to water 
vapor saturation pressure are investigated by using the theo-
retical relationship between temperature variation and water 
vapor saturation pressure (e.g. Formayer and Fritz 2017). 
Usually, the relationships between extreme precipitation 
and daily maximum temperature, daily mean temperature, 
as well as relative humidity are examined (Gao et al. 2020; 
Lepore et al. 2015; Loriaux et al. 2016). Considering the 
constraints imposed by water vapor availability and energy 
transport capacity, dynamic factors influence extreme pre-
cipitation through the modulation of large-scale circulation 
patterns, advection and atmospheric moisture content (Mul-
ler et al. 2011). For example, East Asian summer monsoon 
circulation, western Pacific subtropical high and El Niño-
Southern Oscillation (ENSO) were observed to have con-
siderable impacts on extreme precipitation in China (Chen 
2013; Huang et al. 2003, 2022). Atmospheric instability, 
horizontal wind convergence and atmospheric moisture con-
tent were also considered (Chen 2013; Davies et al. 2013; 
Loriaux et al. 2016).

Crucial atmospheric conditions contributing to EPEs have 
been investigated (Li et al. 2023; Loriaux et al. 2016; Mishra 
et al. 2012). Focusing on the “21.7” Zhengzhou record-
breaking precipitation event in China, investigations high-
lighted that synoptic-scale weather systems and land surface 
feedback were contributing factors to this remarkable event 
(Li et al. 2023; Wei et al. 2023). Moreover, the general rela-
tionships between EPEs and atmospheric conditions were 
also explored, and most of these studies only examined on 
an hourly scale or for selected events (Hardwick Jones et al. 
2010; Mishra et al. 2012). Hardwick Jones et al. (2010) 
examined the scaling relationship between extreme precipi-
tation and surface temperature in Australia, and found that 
the Clausius–Clapeyron (C–C) relationship only applies for 
individual storm systems. On the other hand, the possible 
causes of extreme precipitation were approached by system-
atically checking certain atmospheric conditions with corre-
lation/regression methods (Xiong et al. 2023). For instance, 
the relationships between precipitation and atmospheric 
instability as well as temperature were quantified by regres-
sions with the assumption that relationships between them 
are fixed (Lepore et al. 2016, 2015).

The complex and dynamic nature of precipitation and 
its relationships with atmospheric conditions necessitate 
a nuanced and flexible approach to accurately capture the 
underlying dynamics and spatial patterns (Chen and Hos-
sain 2018; Loriaux et al. 2016). In this paper, the focus is 
concentrated on the relationships between EPEs in China 
and the atmospheric conditions of atmospheric instabil-
ity, moisture availability and wind convergence, as well as 
the driving variables of vertical velocity, relative humidity 
and air temperature. The analysis is conducted by explicitly 
account for their coincidence probabilities, i.e., the ratio of 
the situations where precipitation and the given factor both 
reaching at extreme to the whole situations in EPEs (Chen 
and Hossain 2018; Rammig et al. 2015). The objectives 
of this paper are: (1) to quantify the controlling effects of 
atmospheric conditions and driving variables on EPEs, (2) to 
validate the atmospheric condition that dominantly controls 
EPEs in each grid cell, and (3) to identify the spatial patterns 
of the dominant controlling factors at annual and seasonal 
timescales. The insights into the relationships between EPEs 
and atmospheric conditions as well as driving variables are 
expected to contribute to rainstorm forecasting, environmen-
tal management and climate change adaptation.
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2  Data description

2.1  Reanalysis data

The fifth generation European Centre for Medium-Range 
Weather Forecasts atmospheric reanalysis (ERA5) (Hers-
bach et al. 2020) is used in this paper in order to illus-
trate the influence of atmospheric conditions and driv-
ing variables on EPEs. The data with latitude–longitude 
grid of 0.25° and temporal resolution of 1 h is used in the 
analysis. Precipitation and atmospheric conditions over 
72-h durations are employed to address the time lag issue 
when quantifying the relationships between precipita-
tion and various atmospheric conditions (Chen and Hos-
sain 2018). This duration is also considered a standard 

design period for large water management infrastructures 
in practice, ensuring a comprehensive assessment of the 
relevant factors. The number of EPEs (ne) is set to be 50, 
100 and 200 to examine the robustness of the findings. 
For each grid cell, the top 50/100/200 72-h precipitation 
events with the highest accumulated rainfall amount of 
reanalysis and observation datasets spanning from 1968 
to 2017 (50 years) are extracted to assess the quality of 
the reconstructed precipitation climatology. The gridded 
observation dataset utilized in this paper is CN05.1 (Wu 
et al. 2017), which stands out as one of the most reliable 
observed datasets concerning air temperature and precipi-
tation in China (Zhu et al. 2021).

The ERA5 climatological maximum 72-h precipitation 
(i.e., the top event) during 1968–2017 in comparison to 

Fig. 1  Climatological maximum 72-h precipitation during 1968–
2017 in ERA5 reanalysis (left) and CN05.1 observation (middle). The 
right column are the regressions between observation and reanalysis 

dataset, where the y axis is the CN05.1 observation and the x axis is 
the ERA5 reanalysis data. The numbers of EPEs are respective 50 in 
a–c, 100 in d–f and 200 in g–i 
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CN05.1 is shown in Fig. 1. The two products are generally 
in accordance with each other. The maximum 72-h precipi-
tation consistently decreases from southeast to northwest. 
The right column of Fig. 1 shows the correlation between 
the maximum 72-h precipitation in ERA5 and CN05.1. The 
coefficients of the linear regression slightly decrease with 
the increase of the number of EPEs. Overall, precipitation 
data of ERA5 shows a high correlation with the observa-
tions. Atmospheric variables of ERA5 have been employed 
in several regions around the world to conduct analyses 
(Betts et al. 2019; Urraca et al. 2018), as a standard or com-
paration object for evaluation of the datasets (Li et al. 2021; 
Shen et al. 2022; Yang et al. 2022). These results indicate 
that the ERA5 data is suitable for analyzing the relationships 
between EPEs and related atmospheric conditions as well as 
driving variables in China.

2.2  Atmospheric conditions

Atmospheric conditions represent the state of the atmos-
phere in terms of instability, moisture availability and mois-
ture convergence. Convective available potential energy 
(CAPE), precipitable water (PW) and vertical velocity at 
700 hPa (verV) respectively represent atmospheric instabil-
ity, moisture availability and moisture convergence (Chen 
and Hossain 2018), which are considered to be influential 
contributors to EPEs (Davies et al. 2013; Gao et al. 2020; 
Hardwick Jones et al. 2010).

The CAPE serves as a valuable indicator of atmospheric 
instability, providing insights into the potential for the devel-
opment of convection, which often leads to heavy rainfall, 
thunderstorms and other severe weather phenomena (Hers-
bach et al. 2023a). It plays a crucial role in the accurate pre-
diction of severe weather events (Brooks et al. 2003). Higher 
value of CAPE indicates a more unstable atmosphere and a 
greater potential for severe weather. In thunderstorm envi-
ronments, observed CAPE values often exceed 1000 J  kg−1, 
and in extreme cases, they can even surpass 5000 J  kg−1 
(Hersbach et al. 2023a).

The PW refers to the total amount of water vapor present 
in a column extending from the Earth's surface to the top of 
the atmosphere (Hersbach et al. 2023a), which indicates the 
moisture available for rainstorms. During intense rainstorm 
events, the amount of moisture depleted can be several times 
greater than the precipitable water content.

The vertical velocity refers to the speed of air motion 
between different pressure levels. It provides valuable under-
standings into the large-scale dynamics of the atmosphere. 
The strength of vertical velocity is also an approximation 
of the large-scale horizontal convergence (LSC) from the 
mass balance perspective (Hersbach et al. 2023b). It helps 
us understand the overall atmospheric dynamics and the con-
vergence of air masses on a larger scale. It was shown that a 

significant amount of water vapor enters the rainstorm sys-
tem at lower levels, typically below 3000 m (Loriaux et al. 
2016; Zhan and Ye 2000). Vertical velocity at 700 hPa and 
850 hPa have been investigated in previous studies (Loriaux 
et al. 2016; McErlich et al. 2023). Two different layers of 
variables are both examined in the analysis and comparison 
of the results are shown in the supplementary material (Fig-
ures S1 and S2). Therefore, vertical velocity at 700 hPa is 
chosen as it is more relevant to precipitation processes (Chen 
and Hossain 2018).

2.3  Driving variables

Driving variables in this paper serve as the fundamental 
atmospheric variables that have driving effects on the afore-
mentioned atmospheric conditions and the 72-h extreme pre-
cipitation process, i.e., vertical velocity, relative humidity 
and air temperature. Specifically, the four relatively inde-
pendent variables selected are as follows: verV, relative 
humidity at 700 hPa (RH), average air temperature between 
850 and 500 hPa (Tavg) as well as air temperature difference 
between 850 and 500 hPa (Tdiff) (Chen and Hossain 2018). 
The inclusion of verV in the analysis of driving variables is 
motivated by its ability to not only indicate water vapor con-
vergence but also influence the moisture and stability of the 
atmosphere. The variables RH and Tdiff are closely related 
to the components included in K-index, which was originally 
used for assessing the likelihood of thunderstorms to occur 
that incorporates both stability and moisture (Charba 1977). 
The high values of K-index are typically observed when the 
atmosphere is characterized by high levels of moisture and 
instability, particularly with significant low-level moisture. 
Relative humidity measures the proximity to atmospheric 
saturation. Like vertical velocity, comparisons of the results 
between 700 and 850 hPa are presented in Figures S1 and 
S2. Although relative humidity at 850 hPa is slightly more 
relevant to EPEs, it has a little effect on the identification of 
dominant controlling factors comparing to vertical veloc-
ity. Therefore, like verV, relative humidity at 700 hPa is 
selected. This selection aligns with the midlevel relative 
humidity term within K-index. Similarly, Tdiff which rep-
resents the vertical temperature lapse rate, is a relevant com-
ponent within K-index.

3  Research methods

3.1  Definition of precipitation events

The precipitation threshold (PT) and dry interval (DI) are 
employed to distinguish between precipitation events (Gaál 
et al. 2014; Loriaux et al. 2016; Molnar et al. 2015). Consid-
ering the characteristics of the ERA5 reanalysis precipitation 
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data and observations used in this paper for the Chinese 
region, a PT of 0.1 mm and a DI of 6 h are utilized (the 
results of sensitivity tests in Figures S3 and S4 indicate that 
PT = 0.1/0.5 and DI = 2/6/10 have marginal effects on the 
identification of dominant controlling factors):

where wp indicates wet periods, t indicates the time order in 
the hourly data, po indicates the hourly precipitation data, 
i indicates each top event (i = 1,…,ne), s indicates the start 
time in a precipitation event, e indicates the end time in 
a precipitation event, TSP indicates time series of precipi-
tation events, j indicates each hour during the 72-h event 
(j = 1,…,72). Overall, adjusting these parameters has mini-
mal impact on the results. Although this method may be 
rough and arbitrary, it proves to be effective in preventing the 
double counting of extreme rainfall amounts within the same 

(1)wp = t (pot ≥ PT),

(2)wpi,s − wpi−1,e ≥ DI,

(3)TSPi,j = powpi,s+j−1,

event. In this paper, the top 50/100/200 72-h precipitation 
events and corresponding factors with the highest cumula-
tive 72-h rainfall amount at every grid cell over a span of 
50 years are identified and extracted:

where TSX indicates time series of factor X, i.e., CAPE, PW, 
verV, RH, Tavg and Tdiff.

There are three steps to examine the relationships 
between EPEs and atmospheric conditions as well as driv-
ing variables, as shown in Fig. 2. The method relating EPEs 
to atmospheric conditions and driving variables is based on 
the classic coincidence probability. The classic coincidence 
probability was originally proposed by Donges et al. (2011) 
in a different context, searching for both instantaneous and 
lagged coincidences between specific percentiles in the pair 
of time series. To determine the number of coincidences (K) 
between two given time series, situations where both two 
time series exhibit extreme state simultaneously or with a 
predefined time lag are identified. The parameters used in 
this analysis are as follows: (1) Δt , which determines the 

(4)TSPi,j → TSXi,j,

Fig. 2  Procedure of the method relating EPEs to atmospheric conditions and driving variables
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width of the time window, ensuring that only coincidences 
within this window are considered, and (2) � , which rep-
resents the time lag. A � value of 0 signifies instantane-
ous coincidences, where both events occur simultaneously 
(Rammig et al. 2015). To normalize K, the total number of 
coincidences is divided by the number of extreme situations 
(N) in the time series. This normalization allows us to obtain 
the coincidence probability (C), which ranges between 0 and 
1. A value of 0 indicates no coincidences, while a value of 
1 signifies the maximum number of possible coincidences. 
The classic coincidence probability serves as an index, indi-
cating the extent to which the given factor influences the 
occurrence of 72-h EPEs at a specific grid cell.

3.2  Identification of extreme states

At each grid cell, the cumulative distribution function (CDF) 
for the atmospheric conditions and driving variables using 
climate records in the period from 1968 to 2017 are cal-
culated. For determination of extreme state, CDF = 95% 
(referred to as parameter p1) is considered as the thresh-
old. Whether the factor X, i.e., CAPE, PW, verV, RH, Tavg 
and Tdiff, representing the entire individual event i is in an 
extreme state depends on the coincidence probability for 
intra-event (C1i). Assuming that hourly rainfall amount stays 
at extreme all the time during the top event in the analysis, 
the number of extreme situations is set to be 72 for each 
event (N1i = 72). Therefore, during each top event, the situ-
ations where factor X stays at extreme are also the situations 
where both two time series exhibit extreme state. The num-
ber of coincidences within an individual event, K1i, deter-
mined by Δt1 = 1 h, �1 = 0, is simply calculated as:

where k1i,j indicates that if the factor X stays at extreme for 
hour j during the event i, xi,j indicates the factor X value for 
hour j during the event i, Xp1

 indicates the factor X value at 
CDF of p1. The coincidence probability for intra-event is 
calculated as:

If coincidence probability for intra-event between precipi-
tation and factor X exceeds 15% (parameter p2) during the 
72-h duration, factor X representing the event i is identified 
to reach an extreme state.

(5)k1i,j =

{

1, if xi,j ≥ Xp1

0, otherwise
,

(6)K1i(Δt1, �1) =

72
∑

j=1

k1i,j,

(7)C1i =
K1i

N1i
.

3.3  Quantification of controlling effects

The coincidence probability for multi-event (C2) is used to 
quantify the controlling effects of atmospheric conditions 
and driving variables on EPEs. Considering each individual 
extreme precipitation event to be in an extreme state indi-
cates that N2 = 50/100/200 events. The number of coinci-
dences for multi-event, K2 , determined by Δt2 = 1 event, 
�2 = 0, is simply calculated as:

where k2i indicates that if the factor X representing the entire 
individual event i is in an extreme state. The coincidence 
probability for multi-event, is calculated as:

which also illustrates the percentage of the EPEs that are 
related to extreme atmospheric conditions and driving vari-
ables. Assuming that the factor exhibiting the highest coin-
cidence probability influences EPEs most, the dominant 
controlling factor of EPEs is identified (Chen and Hossain 
2018). Based on the complete records spanning from 1968 
to 2017, these analyses allow for the derivation of dominant 
controlling factors throughout the year and across seasons.

4  Results

4.1  Results at the annual timescale

There are considerable spatial variations of coincidence 
probabilities between EPEs and extreme CAPE, PW, verV, 
RH, Tavg as well as Tdiff during 1968–2017 at the annual 
timescale, as shown in Fig. 3. Irrespective of the ne set to be 
50, 100 or 200, the spatial distributions of coincidence prob-
abilities remain largely consistent across all factors. These 
findings indicate the stability of the results.

The CAPE exhibits higher coincidence probabilities in 
Northwest China (Fig. 3a–c), suggesting a stronger influ-
ence of CAPE on EPEs in this region compared to other 
areas. Additionally, the mean annual CAPE values are found 
to be higher in Southeast China and lower in Northwest 
China, further reinforcing the credibility of the observation 
that CAPE exerts significant control in Northwest China. 
Notably, the coincidence probability values for CAPE are 
comparatively lower in the Tianshan Mountains, Kunlun 

(8)k2i =

{

1, if C1i ≥ p2
0, otherwise

,

(9)K2 (Δt2, �2) =

ne
∑

i=1

k2i,

(10)C2 =
K2

N2
,
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Fig. 3  The coincidence probabilities between EPEs and extreme a–c CAPE, d–f PW, g–i verV, j–l RH, m–o Tavg and p–r Tdiff during 1968–
2017 at the annual timescale. The numbers of EPEs are respective 50 (left), 100 (middle) and 200 (right)
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Mountains, Qilian Mountains and southeastern Qinghai-
Tibet Plateau regions.

The PW displays a consistently high level of coincidence 
probability values across the entire country (Fig. 3d–f), 
which aligns with the widely accepted notion that water 
vapor supply plays a crucial role in precipitation formation. 
However, it is worth noting that the coincidence probability 
values for PW are slightly lower in Xinjiang and the south-
eastern Qinghai-Tibet Plateau regions.

The verV presents a regional complementarity of coin-
cidence probabilities with that of CAPE (Fig. 3g–i), indi-
cating a strong control effect on EPEs in Southeast China. 
The verV demonstrates high values in southern region of 
the Yunnan-Guizhou Plateau and southeastern boundary of 
the Qinghai-Tibet Plateau, specifically at the junction of the 
Himalayas and Hengduan Mountains. This pattern may be 
associated with the influence of the southwest monsoon from 
Indian Ocean. Furthermore, it is interesting to observe that 
the coincidence probability values for verV are higher in the 
vicinity of the Tianshan Mountains and the Altai Mountains, 
which differs from the phenomenon that the values are lower 
in Northwest China.

The RH has higher coincidence probability values in 
Northwest China (Fig. 3j–l), but lower in eastern part of 
the Qinghai-Tibet Plateau. Ignoring the absolute value, the 
distribution pattern of coincidence probability is similar to 
that of CAPE, where the coincidence probability values for 
RH in the Tianshan, Kunlun and Qilian Mountains are lower 
compared to the nearby regions.

The Tavg (Fig. 3m–o) and Tdiff (Fig. 3p–r) generally have 
low coincidence probability values across the entire coun-
try. However, it is noteworthy that the coincidence prob-
ability values for Tavg are higher in specific regions such as 
the Kunlun Mountains, Qilian Mountains, Sichuan Basin, 
Changbai Mountains, Northeast Plain and northern North 
China Plain.

The CAPE, PW and RH all demonstrate high coinci-
dence probabilities in Northwest China, warranting further 
examination at a sub-regional level. For instance, these three 
factors exhibit differences between northern and southern 
Xinjiang. Using the Tianshan Mountains as a boundary, the 
coincidence probability values for RH in the Junggar Basin 
are slightly lower compared to those in southern Xinjiang. 
On the Inner Mongolia Plateau, the coincidence probability 
values for PW are notably higher than those for CAPE and 
RH. In Qinghai, the areas with high coincidence probability 

values decrease in the order of PW, CAPE and RH. In south-
eastern boundary of the Qinghai-Tibet Plateau, the coinci-
dence probability values for CAPE, PW and RH are low, 
potentially influenced by water vapor transported by the 
southwest monsoon from Indian Ocean. Surprisingly, the 
coincidence probability values for verV are higher in this 
area instead.

The PW is influenced by two driving variables: Tavg, 
representing the maximum moisture holding capacity, and 
RH, which indicates the proximity of actual air moisture to 
the maximum capacity (Chen and Hossain 2018). However, 
the coincidence probability values for Tavg tend to be low, 
suggesting that Tavg may not be a primary factor driving PW 
to extreme in precipitation.

Based on the findings depicted in Fig. 3, a single domi-
nant controlling factor that exerts the most influence on 
72-h EPEs at each grid cell can be identified (Fig. 4). The 
“competition” among atmospheric conditions at the annual 
timescale is shown in Fig. 4a–c. Generally, Southeast and 
Southwest China are dominantly controlled by verV, North 
and Central China by PW and Northwest China by CAPE.

Southeast and Southwest China as well as part of North-
east China are dominantly controlled by verV, most of which 
are wet regions according to the dry/wet classification of 
areas (typically with mean annual precipitation limits of 800, 
400 and 200 mm). In these areas, water vapor is mainly 
transported by the southeast monsoon from Pacific Ocean, 
while southeastern boundary of the Qinghai-Tibet Plateau 
is influenced by the southwest monsoon from Indian Ocean. 
These regions typically have ample water vapor supply, and 
moisture convergence contributes to moisture transport from 
nearby areas. In the case of EPEs, the water vapor consumed 
is several times that PW. Hence, verV plays a more crucial 
role in controlling EPEs in these regions. However, there are 
exceptions where PW or even CAPE take precedence in the 
wet regions. For instance, PW controls EPEs in the Chang-
bai Mountains, Taiwan Mountains, southwestern Hainan, 
Wushan Mountains and Yunnan-Guizhou Plateau, which are 
characterized by mountainous and plateau terrains. In these 
areas, water vapor is lifted by the topography, making suf-
ficient moisture crucial for EPEs. In the southeastern corner 
of Tibet, specifically at the junction of the Himalayas and 
Hengduan Mountains, the higher terrain and lower tempera-
tures create a colder and more stable air mass. As a result, 
significant disturbance in the form of CAPE is required to 
trigger extreme precipitation in these regions.

Part of Northeast China, North and Central China, part 
of the Qinghai-Tibet Plateau, as well as the areas near by 
the Tianshan Mountains are dominantly controlled by PW, 
which mostly consist of semi-humid and semi-arid regions. 
However, in certain mountainous areas with sufficient water 
vapor, verV replaces PW as the dominant controlling fac-
tor even though they belong to semi-humid and semi-arid 

Fig. 4  Dominant controlling factors of EPEs at the annual timescale 
for analyses using a–c CAPE/PW/verV, d–f verV/RH/Tavg/Tdiff, g–i 
verV/Tavg/Tdiff and j–l CAPE/PW/verV/RH/Tavg/Tdiff. And m–o 
reflect if the grid cell has the single dominant controlling factor or 
not. The numbers of EPEs are respective 50 (left), 100 (middle) and 
200 (right)

◂
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regions. This is observed in the northern Tianshan Moun-
tains and the Altai Mountains. In the northwestern Junggar 
Basin, there is a topographic gap where prevailing westerly 
winds can transport water vapor from the North Atlantic. 
Despite the considerable distance, the westerly winds pass 
through the flat Western European plain, Eastern European 
plain and low Kazak hills, encountering less obstruction in 
reaching this area. Along with that from the Arctic Ocean, 
water vapor is influenced by the uplifting effect of the Tian-
shan Mountains. Similarly, water vapor from North Atlan-
tic, carried by prevailing westerly winds, is uplifted over 
the Altai Mountains. In these regions, verV plays a crucial 
role in generating EPEs. Additionally, in areas with higher 
terrains, such as the western Qinghai-Tibet Plateau, CAPE 
becomes the dominant controlling factor due to the cold and 
stable air condition although they are semi-humid and semi-
arid regions.

Northwest China are dominantly controlled by CAPE, 
the majority of which are arid regions characterized by 
dry, hot climate and stable air condition. In comparison to 
other regions, these areas experience lower level of extreme 
rainfall, requiring less water vapor for precipitation. Fur-
thermore, the conversion efficiency of PW to precipitation 
is relatively high in Northwest China (Dong et al. 2019). 
Therefore, in the presence of significant disturbances, EPEs 
may occur in these regions. However, the Qaidam Basin, 
despite being part of arid areas, is dominantly controlled by 
PW, which is low lying, surrounded by plateau mountains 
and has slightly lower temperature than nearby areas.

The “competition” among driving variables at the annual 
timescale (Fig. 4d–f) reveal that RH plays a driving role in 
Northwest China and Inner Mongolia Plateau, while verV 
takes precedence in Southeast China, and Tavg has a con-
siderable impact on a small portion of the Qinghai-Tibet 
Plateau. The notable influence of RH can be attributed to its 
inherent upper limit, with values typically capped at 100% 
(or exceeding 100% in supersaturation conditions). RH often 
persists near this upper bound during EPEs. Additionally, 
RH tends to reach its annual maximum in winter, when it 
is more challenging for other factors to reach extreme state. 
For these reasons, another evaluation excluding RH is per-
formed, and the results are illustrated in Fig. 4g–i. The find-
ings indicate that verV drives extreme precipitation in most 
parts of the country, while Tavg takes over as the primary 
factor in the Qinghai-Tibet Plateau.

The comprehensive comparisons of atmospheric condi-
tions and driving variables at the annual timescale are pro-
vided in Fig. 4j–l. The spatial distribution patterns observed 
in Fig. 4j–l are similar to that in Fig. 4a–c, indicating the 
stability of the dominant controlling factors. It confirms that 
the driving variables affect extreme precipitation by driving 
CAPE, PW and verV to extreme state. The individual effect 
does not surpass the impact of the dominant controlling 

atmospheric condition itself. It should be noted that some 
grid cells controlled by RH may be influenced by its natu-
ral upper limit. The significance of the dominant control-
ling factor for a single grid cell is examined (Fig. 4m–o). 
If the grid cell has one single dominant control (i.e., one 
single highest coincidence probability value), the result is 
considered to be significant. And it is confirmed that in the 
majority of areas in China, the method of determining the 
dominant controlling factors of EPEs by using the classic 
coincidence probabilities is shown to be effective.

4.2  Results at the seasonal timescale

The seasonal variations in the coincidence probabilities 
between EPEs and extreme CAPE, PW, verV, RH, Tavg as 
well as Tdiff are shown in Fig. 5, and top fifty EPEs during 
the selected season are chosen.

The coincidence probabilities are low during Decem-
ber–January–February (DJF), which could be attributed to 
the relatively reduced occurrence of extreme precipitation 
in China during that season. Results demonstrate that CAPE 
exhibits relatively low coincidence probability values during 
June–July–August (JJA) and governs a smaller geographi-
cal area (Fig. 5b). Furthermore, RH displays higher coin-
cidence probability values in Southeast China during JJA 
compared to the rest of the year (Fig. 5n). In terms of other 
factors, the spatial distributions of coincidence probabilities 
in March–April–May (MAM), JJA and September–Octo-
ber–November (SON) closely resemble those observed 
throughout the entire year.

The seasonal variations in the dominant controlling 
factors are presented in Fig. 6. Similarly, due to the rela-
tively lower occurrence of extreme precipitation in China 
during DJF, there is no evident spatial pattern of the domi-
nant controlling factors during that season. PW occupies 
more dominant regions than that controlled by CAPE and 
verV in MAM (Fig. 6a). During JJA, verV and PW control 
larger areas in Northeast and Northwest China respectively 
(Fig. 6b). Additionally, Tavg controls a smaller region com-
pared to other factors in JJA (Fig. 6f). The distributions of 
“competition” among atmospheric conditions and driving 
variables in MAM, JJA and SON exhibit similar patterns 
that observed throughout the entire year. These findings 
simplify the practical application of results and signify the 
stability of the dominant controlling factors.

4.3  Results by region

Three case study regions are selected to delve into the rela-
tionships between EPEs and atmospheric conditions as well 
as driving variables. Being different from the above analysis 
at the grid cell level, the area-weighted data is used (Loikith 
et al. 2017; Thompson et al. 2020). The precipitation time 
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series from ERA5 and the top fifty 72-h precipitation 
events with the highest rainfall amount during 1968–2017 
of Urumqi, Beijing and Guangzhou regions are shown in 
Fig. 7. Urumqi region is in the middle temperate zone of 
the continental arid climate, characterized by a dry climate 
throughout the year, rare precipitation and significant tem-
perature variations between day and night (Zheng et al. 
2010). The maximum rainfall event occurred on June 8th, 
1978, starting at 23:00, with a cumulative rainfall amount 
of 50.8 mm approximately. Beijing region is situated in the 
warm temperate sub-humid continental monsoon climate 

zone, characterized by hot and rainy summers as well as cold 
and dry winters (Zheng et al. 2010). In the analysis, the max-
imum rainfall event in Beijing began at 18:00 on July 18th, 
2016, accumulating 173.7 mm of rainfall amount approxi-
mately. Guangzhou region falls within the subtropical mon-
soon climate zone, characterized by hot and humid summers 
and mild and dry winters (Zheng et al. 2010). From 1968 
to 2017, all the top fifty 72-h precipitation events in Guang-
zhou region record cumulative rainfall amounts exceeding 
100 mm. The maximum rainfall event took place on May 

Fig. 5  Seasonal variations in the coincidence probabilities between EPEs and extreme a–d CAPE, e–h PW, i–l verV, m–p RH, q–t Tavg and u–x 
Tdiff during 1968–2017
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24th, 2008, starting at about 9:00, resulting in a cumulative 
rainfall amount of approximately 314.3 mm.

For the maximum 72-h precipitation event with the high-
est rainfall amount, the temporal evolution of rainfall, atmos-
pheric conditions and driving variables are shown in Fig. 8. 
RH reached at extreme for 51 h, followed by verV in Urumqi 

region. These two factors played crucial roles in controlling 
this event, but CAPE emerges as the dominant controlling 
factor of EPEs in Urumqi region on the basis of the analysis 
among the top fifty events. In Beijing region, PW consist-
ently reached at extreme within the 72-h period with the C11 
value of 1 and PW is also the dominant controlling factor 

Fig. 6  Seasonal variations in the dominant controlling factors: a–d CAPE/PW/verV, e–h verV/RH/Tavg/Tdiff, i–l verV/Tavg/Tdiff, m–p CAPE/
PW/verV/RH/Tavg/Tdiff. And q–t reflect if the grid cell has the single dominant controlling factor or not
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of EPEs. Following PW, Tavg, verV and RH exhibited high 
values and played notable roles in controlling this event. In 
Guangzhou region, PW reached at extreme for 64 h, rank-
ing first in terms of C11, followed by verV, RH and Tavg. 
Although PW had the highest C11 value in this event, the 
coincidence probability values for verV were higher among 
the top fifty EPEs, indicating that verV serves as the domi-
nant controlling factor of EPEs in Guangzhou region. Nota-
bly, the temporal evolution of verV closely resembled that 
of rainfall in all these regions.

The CDF curves of CAPE, PW, verV, RH, Tavg and Tdiff, 
which are derived from climate records in the period from 
1968 to 2017, are shown by the blue lines in Fig. 9. The 
values of atmospheric conditions and driving variables for 
the maximum 72-h precipitation event are overlaid with 
the CDF curves, indicated by red dots. The CDF curves of 
CAPE and PW in Urumqi region are quite different from 
that in Beijing region and Guangzhou region. CAPE in 
Urumqi region tends to remain at a low state, with even the 
value at the 95th percentile on the CDF being relatively low, 
not reaching 1000 J  kg−1 that often observed in thunder-
storm environments. For PW in Urumqi region, the value at 

95th percentile is about 20 mm which is below half that of 
other two regions. This phenomenon may be attributed to 
the lower absolute values of total rainfall amount typically 
observed in arid regions like Urumqi.

5  Discussion

The classic coincidence probability has been utilized to 
investigate the controlling factors of extreme precipita-
tion for United States (Chen and Hossain 2018) and also 
for Henan Province in China (Lang et al. 2022). The inves-
tigations conducted by Chen and Hossain (2018, 2019) 
highlighted the spatial variations of the controlling factors 
and emphasized the significance of verV in the continental 
United States. These findings opened up new avenues for 
statistical analyses and the development of hybrid models 
in estimating probable maximum precipitation (PMP). Lang 
et al. (2022) suggested that verV and PW are the dominant 
controlling factors during summer, while CAPE and verV 
exhibit a strong relation to EPEs during winter in Henan. 
When examining the seasonal variation, it is important to 
note that Lang et al. (2022) identified the EPEs that took 

Fig. 7  The precipitation time series from the reanalysis and the top fifty 72-h precipitation events with the highest rainfall amount during 1968–
2017 of a Urumqi region, b Beijing region and c Guangzhou region
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place throughout the year and categorized them into seasons 
according to their occurrence time. In contrast, this paper 
selects the top fifty EPEs within each season. As a result, 
there may be discrepancies in the seasonal distributions of 
coincidence probabilities. Nonetheless, the findings regard-
ing the dominant controlling factors remain largely consist-
ent. Although the key atmospheric conditions and driving 
variables contributing to EPEs are investigated while con-
sidering spatial patterns, there is still a need for a localized 
investigation to obtain even more reliable results.

Environmental conditions contributing to long-term 
variations can also affect the spatial patterns and classifi-
cation of EPEs (Cipolla et al. 2020), such as topography 
(Li et al. 2019; Vanden Broucke et al. 2019), monsoonal 
circulation systems (Zhu et al. 2011) and also urbaniza-
tion-induced heat island and aerosol effects (Zhong et al. 
2015). In China, the large scale environmental conditions 
such as East Asian monsoon, western Pacific subtropical 
high, mid-latitude disturbances (Huang et al. 2003) and 

westerly winds in the South China Sea caused by the Mad-
den–Julian Oscillation (MJO) (Tao and Wei 2007) have 
been taken into account to analyze the formation mecha-
nisms of EPEs. On the Qinghai-Tibet Plateau, the con-
nection between winter snow cover with the occurrence 
of EPEs in South China was investigated, especially its 
significant positive correlation with the summer rainfall in 
the Yangtze River Basin the following year (Huang et al. 
2006; Wu and Qian 2003). Combined effects of long-term 
and short-term variability on EPEs can be studied further. 
Besides the atmospheric conditions investigated in this 
paper, other atmospheric conditions representing short-
term variability, including dewpoint temperature (Lepore 
et al. 2016), convective inhibition (CIN) (Lepore et al. 
2016) and K-index (Davies et al. 2013), can also be con-
sidered in the analyses of EPEs.

Fig. 8  Temporal evolution of 
the rainfall, atmospheric condi-
tions and driving variables for 
the maximum 72-h precipitation 
event in a Urumqi region, b 
Beijing region and c Guangzhou 
region. The number in “[]” 
reflects how many hours that the 
factor stays extreme (marked 
with purple dots) during the 
selected 72-h rainstorm event. 
The color of the line indicates 
the number of periods in which 
the factor stays extreme, with 
black, red, blue, green, orange 
and grey representing from the 
highest to the lowest periods 
respectively. And the dashed 
line indicates that the factor 
does not control this event
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6  Conclusions

This paper has presented an in-depth investigation of the 
relationships between 72-h EPEs and atmospheric condi-
tions (atmospheric instability, moisture availability and wind 
convergence) as well as driving variables (vertical velocity, 
relative humidity and air temperature) for each grid cell in 
China. The investigation is built upon the classic coinci-
dence probability. That is, by comparing the coincidence 
probability values obtained from the top events, the annual 
and seasonal dominant controlling factors of EPEs are iden-
tified. The results show that at the annual timescale, South-
east and Southwest China are dominantly controlled by verV, 
North and Central China by PW and Northwest China by 
CAPE roughly. From the perspective of driving variables, 
the findings indicate that verV drives extreme precipitation 
in most parts of the country, while Tavg takes over as the 
primary factor in the Qinghai-Tibet Plateau. According to 
the significance tests, the approach to determining the domi-
nant controlling factor of EPEs is shown to be effective. At 

the seasonal timescale, the spatial distributions of coinci-
dence probability values and dominant controlling factors 
exhibit similar patterns as observed throughout the entire 
year except for DJF. Additionally, the diagnostic plots gener-
ated for three case study regions in China provide valuable 
insights into the temporal evolution of precipitation events, 
CDF curves of influential factors and dominant controlling 
factors of EPEs. The diagnostic plots can serve as a practi-
cal guide and aid in formulating appropriate strategies to 
address the challenges posed by EPEs. At the same time, the 
analysis framework that is based on the estimation of classic 
coincidence probability can also be applied to storms at vari-
ous durations. Overall, this paper contributes to validate the 
dominant controlling factor of EPEs for the whole of China 
as well as identify their spatial patterns, which can be impor-
tant for rainstorm forecasting and disaster risk reduction.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00382- 024- 07143-z.

Fig. 9  The CDF curves of a CAPE, b PW, c verV, d RH, e Tavg and 
f Tdiff for Urumqi region (first row), Beijing region (second row) and 
Guangzhou region (third row). The red dots reflect the conditions of 
these factors during the selected event. The 95% CDF which repre-

sents the threshold for the extreme condition is depicted as a dashed 
line. The red font in the title indicates that the factor is the dominant 
controlling factor of EPEs in this grid cell

https://doi.org/10.1007/s00382-024-07143-z
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